Suppr超能文献

用于智能纺织品应用的能量采集材料和结构:最新进展与未来方向。

Energy Harvesting Materials and Structures for Smart Textile Applications: Recent Progress and Path Forward.

机构信息

Department of Human Ecology, University of Alberta, Edmonton, AB T6G 2N1, Canada.

出版信息

Sensors (Basel). 2021 Sep 20;21(18):6297. doi: 10.3390/s21186297.

Abstract

A major challenge with current wearable electronics and e-textiles, including sensors, is power supply. As an alternative to batteries, energy can be harvested from various sources using garments or other textile products as a substrate. Four different energy-harvesting mechanisms relevant to smart textiles are described in this review. Photovoltaic energy harvesting technologies relevant to textile applications include the use of high efficiency flexible inorganic films, printable organic films, dye-sensitized solar cells, and photovoltaic fibers and filaments. In terms of piezoelectric systems, this article covers polymers, composites/nanocomposites, and piezoelectric nanogenerators. The latest developments for textile triboelectric energy harvesting comprise films/coatings, fibers/textiles, and triboelectric nanogenerators. Finally, thermoelectric energy harvesting applied to textiles can rely on inorganic and organic thermoelectric modules. The article ends with perspectives on the current challenges and possible strategies for further progress.

摘要

目前的可穿戴电子设备和电子纺织品(包括传感器)面临的一个主要挑战是电源供应。作为电池的替代品,可以利用服装或其他纺织品作为基质,从各种来源中获取能量。本文综述了与智能纺织品相关的四种不同的能量收集机制。与纺织应用相关的光伏能量收集技术包括使用高效柔性无机薄膜、可印刷有机薄膜、染料敏化太阳能电池以及光伏纤维和长丝。在压电系统方面,本文涵盖了聚合物、复合材料/纳米复合材料和压电纳米发电机。用于纺织摩擦电能量收集的最新进展包括薄膜/涂层、纤维/纺织品和摩擦电纳米发电机。最后,应用于纺织品的热电能量收集可以依靠无机和有机热电模块。本文最后展望了当前的挑战和进一步发展的可能策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5bc/8470160/882e29303d00/sensors-21-06297-g001.jpg

相似文献

2
Advances in Smart Photovoltaic Textiles.
ACS Nano. 2024 Feb 6;18(5):3871-3915. doi: 10.1021/acsnano.3c10033. Epub 2024 Jan 23.
4
Progress on wearable triboelectric nanogenerators in shapes of fiber, yarn, and textile.
Sci Technol Adv Mater. 2019 Jul 31;20(1):837-857. doi: 10.1080/14686996.2019.1650396. eCollection 2019.
5
Smart Electronic Textile-Based Wearable Supercapacitors.
Adv Sci (Weinh). 2022 Nov;9(31):e2203856. doi: 10.1002/advs.202203856. Epub 2022 Oct 3.
6
Smart Textile-Integrated Microelectronic Systems for Wearable Applications.
Adv Mater. 2020 Feb;32(5):e1901958. doi: 10.1002/adma.201901958. Epub 2019 Jul 5.
7
Melding Vapor-Phase Organic Chemistry and Textile Manufacturing To Produce Wearable Electronics.
Acc Chem Res. 2018 Apr 17;51(4):850-859. doi: 10.1021/acs.accounts.7b00604. Epub 2018 Mar 9.
8
Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors.
Sci Adv. 2016 Oct 26;2(10):e1600097. doi: 10.1126/sciadv.1600097. eCollection 2016 Oct.
9
Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials.
Adv Sci (Weinh). 2021 Sep;8(17):e2100864. doi: 10.1002/advs.202100864. Epub 2021 Jul 13.
10
Applications of nanotechnology in smart textile industry: A critical review.
J Adv Res. 2022 Jan 22;38:55-75. doi: 10.1016/j.jare.2022.01.008. eCollection 2022 May.

引用本文的文献

3
Recent Advances in Wearable Textile-Based Triboelectric Nanogenerators.
Nanomaterials (Basel). 2024 Sep 15;14(18):1500. doi: 10.3390/nano14181500.
4
Embroidery Triboelectric Nanogenerator for Energy Harvesting.
Sensors (Basel). 2024 Jun 11;24(12):3782. doi: 10.3390/s24123782.
5
Water-Based Generators with Cellulose Acetate: Uncovering the Mechanisms of Power Generation.
Polymers (Basel). 2024 Feb 4;16(3):433. doi: 10.3390/polym16030433.
6
Green Nanomaterials for Smart Textiles Dedicated to Environmental and Biomedical Applications.
Materials (Basel). 2023 May 30;16(11):4075. doi: 10.3390/ma16114075.
8
Rotating Gate-Driven Solution-Processed Triboelectric Transistors.
Sensors (Basel). 2022 Apr 26;22(9):3309. doi: 10.3390/s22093309.

本文引用的文献

2
Ultrastable and High-Performance Silk Energy Harvesting Textiles.
Nanomicro Lett. 2019 Dec 30;12(1):12. doi: 10.1007/s40820-019-0348-z.
4
All-Fiber-Structured Triboelectric Nanogenerator via One-Pot Electrospinning for Self-Powered Wearable Sensors.
ACS Appl Mater Interfaces. 2021 Jun 2;13(21):24774-24784. doi: 10.1021/acsami.1c03894. Epub 2021 May 20.
6
Textile Triboelectric Nanogenerators Simultaneously Harvesting Multiple "High-Entropy" Kinetic Energies.
ACS Appl Mater Interfaces. 2021 May 5;13(17):20145-20152. doi: 10.1021/acsami.1c03250. Epub 2021 Apr 20.
7
Enhancing the Performance of Fabric-Based Triboelectric Nanogenerators by Structural and Chemical Modification.
ACS Appl Mater Interfaces. 2021 Apr 14;13(14):16916-16927. doi: 10.1021/acsami.1c02815. Epub 2021 Apr 5.
8
Triboelectric Yarns with Electrospun Functional Polymer Coatings for Highly Durable and Washable Smart Textile Applications.
ACS Appl Mater Interfaces. 2021 Apr 14;13(14):16876-16886. doi: 10.1021/acsami.1c00983. Epub 2021 Mar 30.
9
Textile-Based Triboelectric Nanogenerators for Wearable Self-Powered Microsystems.
Micromachines (Basel). 2021 Feb 5;12(2):158. doi: 10.3390/mi12020158.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验