Guo Yong, Meng Jie-Ru, Liu Jia-Zheng, Xu Ting, Zheng Zhi-Yuan, Jiang Zhi-Hong, Bai Li-Ping
State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa, Macau 999078, China.
School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
Pharmaceuticals (Basel). 2021 Aug 31;14(9):885. doi: 10.3390/ph14090885.
The 2019 coronavirus disease (COVID-19) caused by SARS-CoV-2 virus infection has posed a serious danger to global health and the economy. However, SARS-CoV-2 medications that are specific and effective are still being developed. Honokiol is a bioactive component from Cortex with damp-drying effect. To develop new potent antiviral molecules, a series of novel honokiol analogues were synthesized by introducing various 3-((5-phenyl-1,3,4-oxadiazol-2-yl)methyl)oxazol-2(3)-ones to its molecule. In a SARS-CoV-2 pseudovirus model, all honokiol derivatives were examined for their antiviral entry activities. As a result, and demonstrated antiviral entry effect with IC values of 29.23 and 9.82 µM, respectively. However, the parental honokiol had a very weak antiviral activity with an IC value more than 50 µM. A biolayer interfero-metry (BLI) binding assay and molecular docking study revealed that binds to human ACE2 protein with higher binding affinity and lower binding energy than the parental honokiol. A competitive ELISA assay confirmed the inhibitory effect of on SARS-CoV-2 spike RBD's binding with ACE2. Importantly, and (TC > 100 μM) also had higher biological safety for host cells than honokiol (TC of 48.23 μM). This research may contribute to the discovery of potential viral entrance inhibitors for the SARS-CoV-2 virus, although 's antiviral efficacy needs to be validated on SARS-CoV-2 viral strains in a biosafety level 3 facility.
由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)病毒感染引起的2019冠状病毒病(COVID-19)对全球健康和经济构成了严重威胁。然而,特异性和有效的SARS-CoV-2药物仍在研发中。厚朴酚是一种具有燥湿作用的皮层生物活性成分。为了开发新的强效抗病毒分子,通过将各种3-((5-苯基-1,3,4-恶二唑-2-基)甲基)恶唑-2(3)-酮引入厚朴酚分子中,合成了一系列新型厚朴酚类似物。在SARS-CoV-2假病毒模型中,检测了所有厚朴酚衍生物的抗病毒进入活性。结果显示,[具体化合物1]和[具体化合物2]表现出抗病毒进入作用,其半数抑制浓度(IC)值分别为29.23和9.82 μM。然而,母体厚朴酚的抗病毒活性非常弱,IC值超过50 μM。生物膜干涉(BLI)结合试验和分子对接研究表明,[具体化合物1]与亲本厚朴酚相比,以更高的结合亲和力和更低的结合能与人血管紧张素转换酶2(ACE2)蛋白结合。竞争性酶联免疫吸附测定(ELISA)证实了[具体化合物1]对SARS-CoV-2刺突受体结合域(RBD)与ACE2结合的抑制作用。重要的是,[具体化合物1]和[具体化合物2](毒性浓度>100 μM)对宿主细胞的生物安全性也高于厚朴酚(毒性浓度为48.23 μM)。尽管[具体化合物1]的抗病毒疗效需要在生物安全3级设施中的SARS-CoV-2病毒株上进行验证,但这项研究可能有助于发现针对SARS-CoV-2病毒的潜在病毒进入抑制剂。