Duchamp Margaux, Arnaud Marion, Bobisse Sara, Coukos George, Harari Alexandre, Renaud Philippe
Laboratory of Microsystems LMIS4, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1011 Lausanne, Switzerland.
Department of Oncology, Ludwig Institute for Cancer Research, Lausanne University Hospital, University of Lausanne, CH-1066 Lausanne, Switzerland.
Micromachines (Basel). 2021 Sep 6;12(9):1076. doi: 10.3390/mi12091076.
Droplet microfluidics are characterized by the generation and manipulation of discrete volumes of solutions, generated with the use of immiscible phases. Those droplets can then be controlled, transported, analyzed or their content modified. In this wide droplet microfluidic toolbox, no means are available to generate, in a controlled manner, droplets co-encapsulating to aqueous phases. Indeed, current methods rely on random co-encapsulation of two aqueous phases during droplet generation or the merging of two random droplets containing different aqueous phases. In this study, we present a novel droplet microfluidic device to reliably and efficiently co-encapsulate two different aqueous phases in micro-droplets. In order to achieve this, we combined existing droplet microfluidic modules in a novel way. The different aqueous phases are individually encapsulated in droplets of different sizes. Those droplet populations are then filtered in order to position each droplet type towards its adequate trapping compartment in traps of a floating trap array. Single droplets, each containing a different aqueous phase, are thus paired and then merged. This pairing at high efficiency is achieved thanks to a unique combination of floating trap arrays, a droplet railing system and a droplet size-based filtering mechanism. The microfluidic chip design presented here provides a filtering threshold with droplets larger than 35 μm (big droplets) being deviated to the lower rail while droplets smaller than 20 μm (small droplets) remain on the upper rail. The effects of the rail height and the distance between the two (upper and lower) rails were investigated. The optimal trap dimensions provide a trapping efficiency of 100% for small and big droplets with a limited double trapping (both compartments of the traps filled with the same droplet type) of 5%. The use of electrocoalescence enables the generation of a droplet while co-encapsulating two aqueous phases. Using the presented microfluidic device libraries of 300 droplets, dual aqueous content can be generated in less than 30 min.
液滴微流控技术的特点是利用不混溶相生成和操控离散体积的溶液。然后可以对这些液滴进行控制、运输、分析或改变其内容物。在这个广泛的液滴微流控工具箱中,没有办法以可控的方式生成共包封两个水相的液滴。实际上,目前的方法依赖于在液滴生成过程中两个水相的随机共包封或两个含有不同水相的随机液滴的合并。在本研究中,我们提出了一种新型的液滴微流控装置,以可靠且高效地在微滴中共包封两种不同的水相。为了实现这一点,我们以一种新颖的方式组合了现有的液滴微流控模块。不同的水相被分别封装在不同大小的液滴中。然后对这些液滴群体进行过滤,以便将每种液滴类型定位到浮动阱阵列的阱中其合适的捕获隔室。这样,每个都含有不同水相的单个液滴就会配对,然后合并。由于浮动阱阵列、液滴围栏系统和基于液滴大小的过滤机制的独特组合,实现了这种高效配对。这里展示的微流控芯片设计提供了一个过滤阈值,大于35μm的液滴(大液滴)会偏离到下轨,而小于20μm的液滴(小液滴)则留在上轨。研究了轨高和两条(上轨和下轨)轨之间的距离的影响。最佳的阱尺寸对于小液滴和大液滴提供了100%的捕获效率,双重捕获(阱的两个隔室都填充相同类型的液滴)的比例有限,为5%。利用电聚结能够在共包封两个水相的同时生成一个液滴。使用所展示的微流控装置,在不到30分钟内可以生成300个具有双重水相内容物的液滴库。