Suppr超能文献

壳聚糖交联聚苯胺仿生细胞-基底在 TiO 纳米管上的图案化使 hBM-MSCs 分化为成骨细胞类型。

Biomimetic Cell-Substrate of Chitosan-Cross-linked Polyaniline Patterning on TiO Nanotubes Enables hBM-MSCs to Differentiate the Osteoblast Cell Type.

机构信息

Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea.

Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea.

出版信息

ACS Appl Mater Interfaces. 2021 Oct 6;13(39):47100-47117. doi: 10.1021/acsami.1c09778. Epub 2021 Sep 27.

Abstract

Titanium-based substrates are widely used in orthopedic treatments and hard tissue engineering. However, many of these titanium (Ti) substrates fail to interact properly between the cell-to-implant interface, which can lead to loosening and dislocation from the implant site. As a result, scaffold implant-associated complications and the need for multiple surgeries lead to an increased clinical burden. To address these challenges, we engineered osteoconductive and osteoinductive biosubstrates of chitosan (CS)-cross-linked polyaniline (PANI) nanonets coated on titanium nanotubes (TiONTs) in an attempt to mimic bone tissue's major extracellular matrix. Inspired by the architectural and tunable mechanical properties of such tissue, the TiONTs-PANI@CS-based biofilm conferred strong anticorrosion, the ability to nucleate hydroxyapatite nanoparticles, and excellent biocompatibility with human bone marrow-derived mesenchymal stem cells (hBM-MSCs). An in vitro study showed that the substrate-supported cell activities induced greater cell proliferation and differentiation compared to cell-TiONTs alone. Notably, the bone-related genes (collagen-I, OPN, OCN, and RUNX 2) were highly expressed within TiONTs-PANI@CS over a period of 14 days, indicating greater bone cell differentiation. These findings demonstrate that the in vitro functionality of the cells on the osteoinductive-like platform of TiONTs-PANI@CS improves the efficiency for osteoblastic cell regeneration and that the substrate potentially has utility in bone tissue engineering applications.

摘要

基于钛的基底在骨科治疗和硬组织工程中被广泛应用。然而,许多这些钛(Ti)基底不能在细胞-植入物界面之间正确地相互作用,这可能导致植入物松动和脱位。结果,支架植入相关并发症和多次手术的需要导致了更高的临床负担。为了解决这些挑战,我们设计了壳聚糖(CS)交联聚苯胺(PANI)纳米网涂覆在钛纳米管(TiONTs)上的骨诱导和骨传导生物基底,试图模仿骨组织的主要细胞外基质。受这种组织的结构和可调机械性能的启发,基于 TiONTs-PANI@CS 的生物膜具有很强的耐腐蚀性、能够成核羟基磷灰石纳米粒子以及与人类骨髓间充质干细胞(hBM-MSCs)极好的生物相容性。体外研究表明,与单独的细胞-TiONTs 相比,该基底支持的细胞活性诱导了更高的细胞增殖和分化。值得注意的是,在 TiONTs-PANI@CS 上的类骨诱导平台上,骨相关基因(胶原-I、OPN、OCN 和 RUNX2)在 14 天内高度表达,表明骨细胞分化程度更高。这些发现表明,细胞在 TiONTs-PANI@CS 类骨诱导平台上的体外功能提高了成骨细胞再生的效率,并且该基底有可能在骨组织工程应用中具有实用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验