Narayanan Kannan Badri
School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
Biomimetics (Basel). 2025 May 15;10(5):317. doi: 10.3390/biomimetics10050317.
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development of nanostructured surfaces of polymeric nanocomposites has garnered increasing attention in the fields of tissue engineering and regenerative medicine due to their ability to modulate cellular responses and enhance tissue regeneration. Various top-down and bottom-up techniques, including nanolithography, etching, deposition, laser ablation, template-assisted synthesis, and nanografting techniques, are employed to create structured surfaces on biomaterials. Additionally, nanotopographies can be fabricated using polymeric nanocomposites, with or without the integration of organic and inorganic nanomaterials, through advanced methods such as using electrospinning, layer-by-layer (LbL) assembly, sol-gel processing, in situ polymerization, 3D printing, template-assisted methods, and spin coating. The surface topography of polymeric nanocomposite scaffolds can be tailored through the incorporation of organic nanomaterials (e.g., chitosan, dextran, alginate, collagen, polydopamine, cellulose, polypyrrole) and inorganic nanomaterials (e.g., silver, gold, titania, silica, zirconia, iron oxide). The choice of fabrication technique depends on the desired surface features, material properties, and specific biomedical applications. Nanotopographical modifications on biomaterials' surface play a crucial role in regulating cell behavior, including adhesion, proliferation, differentiation, and migration, which are critical for tissue engineering and repair. For effective tissue regeneration, it is imperative that scaffolds closely mimic the native extracellular matrix (ECM), providing a mechanical framework and topographical cues that replicate matrix elasticity and nanoscale surface features. This ECM biomimicry is vital for responding to biochemical signaling cues, orchestrating cellular functions, metabolic processes, and subsequent tissue organization. The integration of nanotopography within scaffold matrices has emerged as a pivotal regulator in the development of next-generation biomaterials designed to regulate cellular responses for enhanced tissue repair and organization. Additionally, these scaffolds with specific surface topographies, such as grooves (linear channels that guide cell alignment), pillars (protrusions), holes/pits/dots (depressions), fibrous structures (mimicking ECM fibers), and tubular arrays (array of tubular structures), are crucial for regulating cell behavior and promoting tissue repair. This review presents recent advances in the fabrication methodologies used to engineer nanotopographical microenvironments in polymeric nanocomposite tissue scaffolds through the incorporation of nanomaterials and biomolecular functionalization. Furthermore, it discusses how these modifications influence cellular interactions and tissue regeneration. Finally, the review highlights the challenges and future perspectives in nanomaterial-mediated fabrication of nanotopographical polymeric scaffolds for tissue engineering and regenerative medicine.
纳米拓扑结构是指材料在亚微米(<1000纳米)和纳米(<100纳米)尺度上的复杂表面特征。这些表面拓扑特征显著影响生物材料的物理、化学和生物学性质,进而影响它们与细胞及周围组织的相互作用。由于聚合物纳米复合材料的纳米结构表面能够调节细胞反应并促进组织再生,其在组织工程和再生医学领域受到了越来越多的关注。人们采用了各种自上而下和自下而上的技术来在生物材料上创建结构化表面,包括纳米光刻、蚀刻、沉积、激光烧蚀、模板辅助合成和纳米接枝技术等。此外,通过先进的方法,如静电纺丝、层层(LbL)组装、溶胶-凝胶处理、原位聚合、3D打印、模板辅助方法和旋涂等,可以使用聚合物纳米复合材料来制造纳米拓扑结构,无论是否集成有机和无机纳米材料。聚合物纳米复合材料支架的表面形貌可以通过加入有机纳米材料(如壳聚糖、葡聚糖、藻酸盐、胶原蛋白、聚多巴胺、纤维素、聚吡咯)和无机纳米材料(如银、金、二氧化钛、二氧化硅、氧化锆、氧化铁)来进行定制。制造技术的选择取决于所需的表面特征、材料特性和特定的生物医学应用。生物材料表面的纳米拓扑修饰在调节细胞行为(包括粘附、增殖、分化和迁移)方面起着关键作用,而这些行为对于组织工程和修复至关重要。为了实现有效的组织再生,支架必须紧密模拟天然细胞外基质(ECM),提供能够复制基质弹性和纳米级表面特征的机械框架和拓扑线索。这种ECM仿生对于响应生化信号线索、协调细胞功能、代谢过程以及后续的组织构建至关重要。纳米拓扑结构在支架基质中的整合已成为下一代生物材料开发中的关键调节因素,这些生物材料旨在调节细胞反应以增强组织修复和构建。此外,这些具有特定表面形貌的支架,如凹槽(引导细胞排列的线性通道)、支柱(突起)、孔/坑/点(凹陷)、纤维结构(模拟ECM纤维)和管状阵列(管状结构阵列),对于调节细胞行为和促进组织修复至关重要。本综述介绍了通过纳入纳米材料和生物分子功能化来设计聚合物纳米复合组织支架中纳米拓扑微环境的制造方法的最新进展。此外,还讨论了这些修饰如何影响细胞相互作用和组织再生。最后,综述强调了在用于组织工程和再生医学的纳米材料介导的纳米拓扑聚合物支架制造中的挑战和未来前景。