Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island 02912, USA; email:
Department of Clinical Psychology, Leiden University, 2333 AK Leiden, The Netherlands; email:
Annu Rev Psychol. 2022 Jan 4;73:243-270. doi: 10.1146/annurev-psych-021621-124910. Epub 2021 Sep 27.
Why has computational psychiatry yet to influence routine clinical practice? One reason may be that it has neglected context and temporal dynamics in the models of certain mental health problems. We develop three heuristics for estimating whether time and context are important to a mental health problem: Is it characterized by a core neurobiological mechanism? Does it follow a straightforward natural trajectory? And is intentional mental content peripheral to the problem? For many problems the answers are no, suggesting that modeling time and context is critical. We review computational psychiatry advances toward this end, including modeling state variation, using domain-specific stimuli, and interpreting differences in context. We discuss complementary network and complex systems approaches. Novel methods and unification with adjacent fields may inspire a new generation of computational psychiatry.
为什么计算精神病学尚未影响常规临床实践?原因之一可能是它忽略了某些心理健康问题模型中的上下文和时间动态。我们为评估时间和上下文是否对心理健康问题很重要开发了三个启发式方法:它是否具有核心神经生物学机制?它是否遵循简单的自然轨迹?并且,意向性心理内容是否是问题的次要部分?对于许多问题,答案是否定的,这表明对时间和上下文进行建模是至关重要的。我们回顾了朝着这一目标发展的计算精神病学进展,包括对状态变化进行建模、使用特定于领域的刺激以及解释上下文差异。我们还讨论了互补的网络和复杂系统方法。新颖的方法和与相邻领域的统一可能会激发新一代的计算精神病学。