Suppr超能文献

通过主动推理和脑成像提高精神疾病计算表型的结构效度

Increasing the Construct Validity of Computational Phenotypes of Mental Illness Through Active Inference and Brain Imaging.

作者信息

Limongi Roberto, Skelton Alexandra B, Tzianas Lydia H, Silva Angelica M

机构信息

Department of Psychology, Brandon University, Brandon, MB R7A 6A9, Canada.

Department of Psychology, University of Western Ontario, London, ON N6A 3K7, Canada.

出版信息

Brain Sci. 2024 Dec 19;14(12):1278. doi: 10.3390/brainsci14121278.

Abstract

After more than 30 years since its inception, the utility of brain imaging for understanding and diagnosing mental illnesses is in doubt, receiving well-grounded criticisms from clinical practitioners. Symptom-based correlational approaches have struggled to provide psychiatry with reliable brain-imaging metrics. However, the emergence of computational psychiatry has paved a new path not only for understanding the psychopathology of mental illness but also to provide practical tools for clinical practice in terms of computational metrics, specifically computational phenotypes. However, these phenotypes still lack sufficient test-retest reliability. In this review, we describe recent works revealing that mind and brain-related computational phenotypes show structural (not random) variation over time, longitudinal changes. Furthermore, we show that these findings suggest that understanding the causes of these changes will improve the construct validity of the phenotypes with an ensuing increase in test-retest reliability. We propose that the active inference framework offers a general-purpose approach for causally understanding these longitudinal changes by incorporating brain imaging as observations within partially observable Markov decision processes.

摘要

自脑成像技术诞生30多年来,其在理解和诊断精神疾病方面的效用受到质疑,受到临床从业者有充分依据的批评。基于症状的相关方法一直难以给精神病学提供可靠的脑成像指标。然而,计算精神病学的出现不仅为理解精神疾病的精神病理学开辟了一条新路径,而且在计算指标方面,特别是计算表型方面,为临床实践提供了实用工具。然而,这些表型仍然缺乏足够的重测信度。在这篇综述中,我们描述了最近的研究成果,这些成果表明与心智和大脑相关的计算表型随时间呈现出结构性(而非随机)变化,即纵向变化。此外,我们表明这些发现意味着,理解这些变化的原因将提高表型的结构效度,进而提高重测信度。我们提出,主动推理框架提供了一种通用方法,通过将脑成像作为部分可观测马尔可夫决策过程中的观测值,来因果性地理解这些纵向变化。

相似文献

5
Computational Phenotyping in Psychiatry: A Worked Example.精神病学中的计算表型:一个实例研究。
eNeuro. 2016 Aug 2;3(4). doi: 10.1523/ENEURO.0049-16.2016. eCollection 2016 Jul-Aug.
6
Advances in the computational understanding of mental illness.精神疾病计算理解方面的进展。
Neuropsychopharmacology. 2021 Jan;46(1):3-19. doi: 10.1038/s41386-020-0746-4. Epub 2020 Jul 3.
8
Computational approaches to psychiatry.计算精神病学方法。
Curr Opin Neurobiol. 2014 Apr;25:85-92. doi: 10.1016/j.conb.2013.12.007. Epub 2013 Dec 29.
9
Computational psychiatry: the brain as a phantastic organ.计算精神病学:大脑是一个奇妙的器官。
Lancet Psychiatry. 2014 Jul;1(2):148-58. doi: 10.1016/S2215-0366(14)70275-5. Epub 2014 Jul 9.

本文引用的文献

2
The influence of anxiety on exploration: A review of computational modeling studies.焦虑对探索的影响:计算建模研究综述。
Neurosci Biobehav Rev. 2024 Dec;167:105940. doi: 10.1016/j.neubiorev.2024.105940. Epub 2024 Nov 7.
7
Model-Based Approaches to Investigating Mismatch Responses in Schizophrenia.基于模型的精神分裂症失配反应研究方法。
Clin EEG Neurosci. 2025 Jan;56(1):8-21. doi: 10.1177/15500594241253910. Epub 2024 May 15.
9
Cognitive Control in Schizophrenia: Advances in Computational Approaches.精神分裂症中的认知控制:计算方法的进展
Curr Dir Psychol Sci. 2024 Feb;33(1):35-42. doi: 10.1177/09637214231205220. Epub 2023 Nov 10.
10
Dynamic computational phenotyping of human cognition.人类认知的动态计算表型分析。
Nat Hum Behav. 2024 May;8(5):917-931. doi: 10.1038/s41562-024-01814-x. Epub 2024 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验