Suppr超能文献

核 HER3 表达可改善 HER1 阳性晚期喉鳞状细胞癌患者的预后分层。

Nuclear HER3 expression improves the prognostic stratification of patients with HER1 positive advanced laryngeal squamous cell carcinoma.

机构信息

Unit of Head and Neck Oncology, "A. Gemelli" University Hospital Foundation IRCCS-Catholic University of the Sacred Heart, Largo A. Gemelli 8, 00168, Rome, Italy.

Unit of Otorhinolaryngology, "A. Gemelli" University Hospital Foundation IRCCS, Roma, Italy.

出版信息

J Transl Med. 2021 Sep 27;19(1):408. doi: 10.1186/s12967-021-03081-0.

Abstract

BACKGROUND

Compared to the other members of human epidermal growth factor family receptors (HER), the role of HER3 has not been well defined in laryngeal cancer. The predictive and prognostic role of HER3 has been the focus of clinical attention but the research findings are contradictory, especially in laryngeal squamous cell carcinoma (LSCC). The variable localization of HER3 within cancer cells and the role of HER3 in primary and acquired resistance to HER1-targeted therapies remain unclear.

METHODS

We performed a retrospective analysis of two cohorts of 66 homogeneous consecutive untreated primary advanced LSCC patients, in which co-expression of HER1, HER2 and HER3 receptors was investigated by semi-quantitative immunohistochemistry. The association of their pattern of expression with survival was evaluated by Kaplan-Meier and Cox's proportional hazard analyses. Multivariable Cox proportional hazards models were developed to predict median 2- and 3-year RFS and 2.5- and 5-year OS. The Akaike information criterion technique and backwards stepwise procedure were used for model selections. The performance of the final Cox models was assessed with respect to calibration and discrimination.

RESULTS

Immunohistochemical labeling for HER1 and HER2 was localized both in the cell membrane and in the cytoplasm, while HER3 labeling was observed both in the cell cytoplasm and in the nucleus. HER3 expression was inversely correlated with HER1 positivity. The expression patterns of HERs were associated with tumor differentiation. In both cohorts of patients, HER1 expression was associated with reduced relapse-free (RFS) and overall survival (OS). In HER1 positive tumors, the co-expression with nuclear HER3 was associated with better RFS and OS, compared with HER3 negative tumors or tumors expressing HER3 at cytoplasmic level. HER3 expressing tumors had a higher Geminin/MCM7 ratio than HER3 negative ones, regardless of HER1 co-expression. Multivariable analyses identified age at diagnosis, tumor site, HER1, HER3 and age at diagnosis, tumor stage, HER1, HER3, as covariates significantly associated with RFS and OS, respectively. Bootstrapping verified the good fitness of these models for predicting survivals and the optimism-corrected C-indices were 0.76 and 0.77 for RFS and OS, respectively.

CONCLUSIONS

Nuclear HER3 expression was strongly associated with favourable prognosis and allows to improve the prognostic stratification of patients with HER1 positive advanced LSCC carcinoma.

摘要

背景

与人类表皮生长因子家族受体(HER)的其他成员相比,HER3 在喉癌中的作用尚未得到充分明确。HER3 的预测和预后作用一直是临床关注的焦点,但研究结果存在矛盾,尤其是在喉鳞状细胞癌(LSCC)中。HER3 在癌细胞内的可变定位以及 HER3 在原发性和获得性对 HER1 靶向治疗的耐药性中的作用仍不清楚。

方法

我们对 66 例同质连续未经治疗的原发性晚期 LSCC 患者的两个队列进行了回顾性分析,通过半定量免疫组织化学检测 HER1、HER2 和 HER3 受体的共表达。通过 Kaplan-Meier 和 Cox 比例风险分析评估其表达模式与生存的相关性。采用多变量 Cox 比例风险模型预测中位 2 年和 3 年 RFS 和 2.5 年和 5 年 OS。采用 Akaike 信息准则技术和逐步向后程序进行模型选择。最后,通过校准和判别评估 Cox 模型的性能。

结果

HER1 和 HER2 的免疫组织化学标记定位于细胞膜和细胞质,而 HER3 的标记定位于细胞质和细胞核。HER3 表达与 HER1 阳性呈负相关。HERs 的表达模式与肿瘤分化有关。在两个患者队列中,HER1 表达与无复发生存(RFS)和总生存(OS)降低相关。在 HER1 阳性肿瘤中,与 HER3 阴性肿瘤或表达细胞质 HER3 的肿瘤相比,核 HER3 的共表达与更好的 RFS 和 OS 相关。与 HER3 阴性肿瘤相比,表达 HER3 的肿瘤具有更高的 Geminin/MCM7 比值,而与 HER1 共表达无关。多变量分析确定诊断时的年龄、肿瘤部位、HER1、HER3 和诊断时的年龄、肿瘤分期、HER1、HER3 是与 RFS 和 OS 相关的显著协变量。Bootstrapping 验证了这些模型对预测生存率的良好拟合,校正后的 C 指数分别为 RFS 和 OS 的 0.76 和 0.77。

结论

核 HER3 表达与良好的预后密切相关,可改善 HER1 阳性晚期 LSCC 癌患者的预后分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03fc/8477517/6c1493c0b953/12967_2021_3081_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验