Suppr超能文献

利用改良的反硝化-分解模型模拟土壤盐分对盐水吸收和作物生长的影响:一种植物修复方法。

Modelling soil salinity effects on salt water uptake and crop growth using a modified denitrification-decomposition model: A phytoremediation approach.

机构信息

Faculty of Science and Technology, Athabasca University, 1200, 10011, 109 Street, Edmonton, AB T5J 3S8, Canada.

Faculty of Science and Technology, Athabasca University, 1200, 10011, 109 Street, Edmonton, AB T5J 3S8, Canada.

出版信息

J Environ Manage. 2022 Jan 1;301:113820. doi: 10.1016/j.jenvman.2021.113820. Epub 2021 Sep 25.

Abstract

Soil salinization is a widespread problem affecting global food production. Phytoremediation is emerging as a viable and cost-effective technology to reclaim salt-affected soil. However, its efficiency is not clear due to the uncertainty of plant responses in saline soils. The main objective of this paper is to propose a phytoremediation dynamic model (PDM) for salt-affected soil within the process-based biogeochemical denitrification-decomposition (DNDC) model. The PDM represents two salinity processes of phytoremediation: plant salt uptake and salt-affected biomass growth. The salt-soil-plant interaction is simulated as a coupled mass balance equation of water and salt plant uptake. The salt extraction ability by plant is a combination of salt uptake efficiency (F) and transpiration rate. For water filled pore space (WFPS), the statistical measures RMSE, MAE, and R during the calibration period are 2.57, 2.14, and 0.49, and they are 2.67, 2.34, and 0.56 during the validation period, respectively. For soil salinity, RMSE, MAE, and R during the calibration period are 0.02, 0.02, and 0.92, and 0.06, 0.04, and 0.68 during the validation period, respectively, which are reasonably good for further scenario analysis. Over the four years, cumulative salt uptake varied based on weather conditions. At the optimal salt uptake efficiency (F = 20), cumulative salt uptake from soil was 16-90% for alfalfa, 11-70% for barley, and 10-80% for spring wheat. While at the lowest salt uptake efficiency (F = 40), cumulative salt uptake was nearly zero for all crops. Although barley has the highest peak transpiration flux, alfalfa and spring wheat have greater cumulative salt uptake because their peak transpiration fluxes occurred more frequently than in barley. For salt-tolerant crops biomass growth depends on their threshold soil salinity which determines their ability to take up salt without affecting biomass growth. In order to phytoremediate salt-affected soil, salt-tolerant crops having longer duration of crop physiological stages should be used, but their phytoremediation effectiveness will depend on weather conditions and the soil environment.

摘要

土壤盐渍化是影响全球粮食生产的一个普遍问题。植物修复作为一种可行且具有成本效益的技术,正在成为一种回收受盐影响土壤的方法。然而,由于植物在盐渍土壤中的反应存在不确定性,其效率尚不清楚。本文的主要目的是在基于过程的生物地球化学反硝化-分解(DNDC)模型内提出一个受盐影响土壤的植物修复动态模型(PDM)。PDM 代表了植物修复的两个盐渍过程:植物对盐分的吸收和受盐影响的生物量生长。土壤-植物-水的相互作用被模拟为水和盐植物吸收的耦合质量平衡方程。植物的盐分提取能力是盐分吸收效率(F)和蒸腾速率的组合。对于水填充孔隙空间(WFPS),在校准期间的统计度量 RMSE、MAE 和 R 分别为 2.57、2.14 和 0.49,在验证期间分别为 2.67、2.34 和 0.56。对于土壤盐分,在校准期间的 RMSE、MAE 和 R 分别为 0.02、0.02 和 0.92,在验证期间分别为 0.06、0.04 和 0.68,这对于进一步的情景分析来说是相当不错的。在四年的时间里,累积盐分吸收量取决于天气条件。在最佳盐分吸收效率(F=20)下,紫花苜蓿从土壤中吸收的盐分累积量为 16-90%,大麦为 11-70%,春小麦为 10-80%。而在最低的盐分吸收效率(F=40)下,所有作物的累积盐分吸收量几乎为零。虽然大麦的蒸腾通量峰值最高,但紫花苜蓿和春小麦的累积盐分吸收量更大,因为它们的蒸腾通量峰值出现的频率高于大麦。对于耐盐作物,生物量的生长取决于其土壤盐度阈值,这决定了它们在不影响生物量生长的情况下吸收盐分的能力。为了修复受盐影响的土壤,应该使用生理阶段持续时间较长的耐盐作物,但它们的修复效果将取决于天气条件和土壤环境。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验