Suppr超能文献

基于边界调优支持向量机(BT-SVM)的基因选择癌症预测分类器。

Boundaries tuned support vector machine (BT-SVM) classifier for cancer prediction from gene selection.

机构信息

Department of Computer Science, Sri Kaliswari College (Autonomous), Sivakasi, TamilNadu, India.

Department of Information Technology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu, India.

出版信息

Comput Methods Biomech Biomed Engin. 2022 May;25(7):794-807. doi: 10.1080/10255842.2021.1981300. Epub 2021 Sep 29.

Abstract

In recent days, the identified genes which are detecting cancer-causing diseases are plays a crucial part in the microarray data analysis. Huge volume of data required since the disease changed often. Conventional data mining techniques are lacking in space concern and time complexity. Based on big data the proposed work is executed. Using the ISPCA - Improved Supervised Principal Component Analysis, feature extraction is developed in this study. For gene expression, co-variance matrix is generated and through feature selection cancer classification is performed by IPSCA. Further feature selection process by boundaries tuned support vector machines (BT-SVM) classifier and modified particle swarm optimization with novel wrapper model algorithm are performed. The experimentation is carried out by utilizing different datasets like leukaemia, breast cancer dataset, brain cancer, colon, and lung carcinoma from the UCI repository. The proposed work is executed on six benchmark dataset for DNA microarray data in terms of accuracy, recall, and precision to evaluate the performance of the proposed work. For evaluating the proposed work effectiveness, it is compared with various traditional techniques and resulted in optimum accuracy, recall, precision and training time with and without feature selection effectively.

摘要

最近,在微阵列数据分析中,鉴定出的与癌症相关的基因在其中起着至关重要的作用。由于疾病经常发生变化,因此需要大量的数据。传统的数据挖掘技术在空间关注和时间复杂度方面存在不足。本研究基于大数据执行。使用改进的监督主成分分析(ISPCA)进行特征提取。对于基因表达,生成协方差矩阵,并通过 IPSCA 进行癌症分类。进一步通过边界调谐支持向量机(BT-SVM)分类器和带有新型包装模型算法的改进粒子群优化进行特征选择过程。实验利用来自 UCI 存储库的不同数据集(如白血病、乳腺癌数据集、脑癌、结肠和肺癌)进行。为了评估所提出的工作的性能,在六个基准 DNA 微阵列数据集上以准确性、召回率和精度为指标进行了评估。为了评估所提出的工作的有效性,将其与各种传统技术进行了比较,并在有和没有特征选择的情况下有效地获得了最佳的准确性、召回率、精度和训练时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验