Suppr超能文献

从微流体转向真正的横截面小于100微米的微流体3D打印设备。

Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices.

作者信息

Beauchamp Michael J, Nordin Gregory P, Woolley Adam T

机构信息

Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT, 84602, USA.

Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, 84602, USA.

出版信息

Anal Bioanal Chem. 2017 Jul;409(18):4311-4319. doi: 10.1007/s00216-017-0398-3. Epub 2017 Jun 13.

Abstract

Three-dimensional (3D) printing has generated considerable excitement in recent years regarding the extensive possibilities of this enabling technology. One area in which 3D printing has potential, not only for positive impact but also for substantial improvement, is microfluidics. To date many researchers have used 3D printers to make fluidic channels directed at point-of-care or lab-on-a-chip applications. Here, we look critically at the cross-sectional sizes of these 3D printed fluidic structures, classifying them as millifluidic (larger than 1 mm), sub-millifluidic (0.5-1.0 mm), large microfluidic (100-500 μm), or truly microfluidic (smaller than 100 μm). Additionally, we provide our prognosis for making 10-100-μm cross-section microfluidic features with custom-formulated resins and stereolithographic printers. Such 3D printed microfluidic devices for bioanalysis will accelerate research through designs that can be easily created and modified, allowing improved assays to be developed.

摘要

近年来,三维(3D)打印技术因其广泛的应用可能性而备受关注。3D打印技术在微流控领域具有巨大潜力,不仅能带来积极影响,还能实现显著改进。迄今为止,许多研究人员已使用3D打印机制造用于即时护理或芯片实验室应用的流体通道。在此,我们对这些3D打印流体结构的横截面尺寸进行了严格审视,将其分为毫流控(大于1毫米)、亚毫流控(0.5 - 1.0毫米)、大型微流控(100 - 500微米)或真正的微流控(小于100微米)。此外,我们还预测了使用定制配方树脂和立体光刻打印机制造横截面为10 - 100微米的微流控特征的可能性。这种用于生物分析的3D打印微流控设备将通过易于创建和修改的设计加速研究,从而开发出更完善的检测方法。

相似文献

1
Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices.
Anal Bioanal Chem. 2017 Jul;409(18):4311-4319. doi: 10.1007/s00216-017-0398-3. Epub 2017 Jun 13.
2
3D Printed Microfluidics.
Annu Rev Anal Chem (Palo Alto Calif). 2020 Jun 12;13(1):45-65. doi: 10.1146/annurev-anchem-091619-102649. Epub 2019 Dec 10.
3
A review of the recent achievements and future trends on 3D printed microfluidic devices for bioanalytical applications.
Anal Chim Acta. 2024 Apr 22;1299:342429. doi: 10.1016/j.aca.2024.342429. Epub 2024 Feb 28.
5
Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
PLoS One. 2021 Feb 3;16(2):e0245206. doi: 10.1371/journal.pone.0245206. eCollection 2021.
7
Customizable 3D Printed 'Plug and Play' Millifluidic Devices for Programmable Fluidics.
PLoS One. 2015 Nov 11;10(11):e0141640. doi: 10.1371/journal.pone.0141640. eCollection 2015.
8
3D printed microfluidics for biological applications.
Lab Chip. 2015;15(18):3627-37. doi: 10.1039/c5lc00685f.
9
3D-printed microfluidic devices.
Biofabrication. 2016 Jun 20;8(2):022001. doi: 10.1088/1758-5090/8/2/022001.

引用本文的文献

1
Impact of Beam Shape on Print Accuracy in Digital Light Processing Additive Manufacture.
3D Print Addit Manuf. 2024 Apr 1;11(2):517-528. doi: 10.1089/3dp.2022.0193. Epub 2024 Apr 16.
2
Use of 3D printing to integrate microchip electrophoresis with amperometric detection.
Anal Bioanal Chem. 2024 Sep;416(21):4749-4758. doi: 10.1007/s00216-024-05260-6. Epub 2024 Apr 6.
4
High-Resolution Additive Manufacturing of a Biodegradable Elastomer with A Low-Cost LCD 3D Printer.
Adv Healthc Mater. 2024 Apr;13(9):e2303708. doi: 10.1002/adhm.202303708. Epub 2023 Dec 7.
5
Organoid-on-a-chip: Current challenges, trends, and future scope toward medicine.
Biomicrofluidics. 2023 Oct 27;17(5):051505. doi: 10.1063/5.0171350. eCollection 2023 Sep.
6
A review on inertial microfluidic fabrication methods.
Biomicrofluidics. 2023 Oct 19;17(5):051504. doi: 10.1063/5.0163970. eCollection 2023 Sep.
7
Human gut epithelium features recapitulated in MINERVA 2.0 millifluidic organ-on-a-chip device.
APL Bioeng. 2023 Sep 19;7(3):036117. doi: 10.1063/5.0144862. eCollection 2023 Sep.
9
Vat photopolymerization 3D printed microfluidic devices for organ-on-a-chip applications.
Lab Chip. 2023 Aug 8;23(16):3537-3560. doi: 10.1039/d3lc00094j.
10
Leveraging the third dimension in microfluidic devices using 3D printing: no longer just scratching the surface.
Anal Bioanal Chem. 2024 Apr;416(9):2031-2037. doi: 10.1007/s00216-023-04862-w. Epub 2023 Jul 20.

本文引用的文献

1
Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms.
Anal Chem. 2017 Apr 4;89(7):3858-3866. doi: 10.1021/acs.analchem.7b00136. Epub 2017 Mar 24.
2
3D printed auto-mixing chip enables rapid smartphone diagnosis of anemia.
Biomicrofluidics. 2016 Oct 5;10(5):054113. doi: 10.1063/1.4964499. eCollection 2016 Sep.
3
Adding Biomolecular Recognition Capability to 3D Printed Objects.
Anal Chem. 2016 Nov 1;88(21):10767-10772. doi: 10.1021/acs.analchem.6b03426. Epub 2016 Oct 21.
4
3D-printed Microfluidic Devices: Fabrication, Advantages and Limitations-a Mini Review.
Anal Methods. 2016 Aug 21;8(31):6005-6012. doi: 10.1039/C6AY01671E. Epub 2016 Jul 27.
6
Embedding objects during 3D printing to add new functionalities.
Biomicrofluidics. 2016 Jul 13;10(4):044104. doi: 10.1063/1.4958909. eCollection 2016 Jul.
7
Customisable 3D printed microfluidics for integrated analysis and optimisation.
Lab Chip. 2016 Aug 16;16(17):3362-73. doi: 10.1039/c6lc00562d.
8
3D Printed Micro Free-Flow Electrophoresis Device.
Anal Chem. 2016 Aug 2;88(15):7675-82. doi: 10.1021/acs.analchem.6b01573. Epub 2016 Jul 15.
9
3D-printed microfluidic devices.
Biofabrication. 2016 Jun 20;8(2):022001. doi: 10.1088/1758-5090/8/2/022001.
10
High density 3D printed microfluidic valves, pumps, and multiplexers.
Lab Chip. 2016 Jul 7;16(13):2450-8. doi: 10.1039/c6lc00565a. Epub 2016 May 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验