Suppr超能文献

从微流体转向真正的横截面小于100微米的微流体3D打印设备。

Moving from millifluidic to truly microfluidic sub-100-μm cross-section 3D printed devices.

作者信息

Beauchamp Michael J, Nordin Gregory P, Woolley Adam T

机构信息

Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT, 84602, USA.

Department of Electrical and Computer Engineering, Brigham Young University, Provo, UT, 84602, USA.

出版信息

Anal Bioanal Chem. 2017 Jul;409(18):4311-4319. doi: 10.1007/s00216-017-0398-3. Epub 2017 Jun 13.

Abstract

Three-dimensional (3D) printing has generated considerable excitement in recent years regarding the extensive possibilities of this enabling technology. One area in which 3D printing has potential, not only for positive impact but also for substantial improvement, is microfluidics. To date many researchers have used 3D printers to make fluidic channels directed at point-of-care or lab-on-a-chip applications. Here, we look critically at the cross-sectional sizes of these 3D printed fluidic structures, classifying them as millifluidic (larger than 1 mm), sub-millifluidic (0.5-1.0 mm), large microfluidic (100-500 μm), or truly microfluidic (smaller than 100 μm). Additionally, we provide our prognosis for making 10-100-μm cross-section microfluidic features with custom-formulated resins and stereolithographic printers. Such 3D printed microfluidic devices for bioanalysis will accelerate research through designs that can be easily created and modified, allowing improved assays to be developed.

摘要

近年来,三维(3D)打印技术因其广泛的应用可能性而备受关注。3D打印技术在微流控领域具有巨大潜力,不仅能带来积极影响,还能实现显著改进。迄今为止,许多研究人员已使用3D打印机制造用于即时护理或芯片实验室应用的流体通道。在此,我们对这些3D打印流体结构的横截面尺寸进行了严格审视,将其分为毫流控(大于1毫米)、亚毫流控(0.5 - 1.0毫米)、大型微流控(100 - 500微米)或真正的微流控(小于100微米)。此外,我们还预测了使用定制配方树脂和立体光刻打印机制造横截面为10 - 100微米的微流控特征的可能性。这种用于生物分析的3D打印微流控设备将通过易于创建和修改的设计加速研究,从而开发出更完善的检测方法。

相似文献

2
3D Printed Microfluidics.3D打印微流控技术
Annu Rev Anal Chem (Palo Alto Calif). 2020 Jun 12;13(1):45-65. doi: 10.1146/annurev-anchem-091619-102649. Epub 2019 Dec 10.
9
3D-printed microfluidic devices.3D 打印微流控器件。
Biofabrication. 2016 Jun 20;8(2):022001. doi: 10.1088/1758-5090/8/2/022001.

引用本文的文献

6
A review on inertial microfluidic fabrication methods.惯性微流体制备方法综述
Biomicrofluidics. 2023 Oct 19;17(5):051504. doi: 10.1063/5.0163970. eCollection 2023 Sep.

本文引用的文献

1
Comparing Microfluidic Performance of Three-Dimensional (3D) Printing Platforms.比较三种(3D)打印平台的微流控性能。
Anal Chem. 2017 Apr 4;89(7):3858-3866. doi: 10.1021/acs.analchem.7b00136. Epub 2017 Mar 24.
3
Adding Biomolecular Recognition Capability to 3D Printed Objects.为 3D 打印物体添加生物分子识别能力。
Anal Chem. 2016 Nov 1;88(21):10767-10772. doi: 10.1021/acs.analchem.6b03426. Epub 2016 Oct 21.
6
Embedding objects during 3D printing to add new functionalities.在3D打印过程中嵌入物体以添加新功能。
Biomicrofluidics. 2016 Jul 13;10(4):044104. doi: 10.1063/1.4958909. eCollection 2016 Jul.
8
3D Printed Micro Free-Flow Electrophoresis Device.3D 打印微流控自由电泳装置。
Anal Chem. 2016 Aug 2;88(15):7675-82. doi: 10.1021/acs.analchem.6b01573. Epub 2016 Jul 15.
9
3D-printed microfluidic devices.3D 打印微流控器件。
Biofabrication. 2016 Jun 20;8(2):022001. doi: 10.1088/1758-5090/8/2/022001.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验