Suppr超能文献

通过将给体-受体(D-A)体系嵌入二维亚胺连接的共价有机框架实现高性能电阻开关行为

Towards High-Performance Resistive Switching Behavior through Embedding a D-A System into 2D Imine-Linked Covalent Organic Frameworks.

作者信息

Li Chenyu, Li Dong, Zhang Weifeng, Li Hao, Yu Gui

机构信息

Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2021 Dec 20;60(52):27135-27143. doi: 10.1002/anie.202112924. Epub 2021 Nov 16.

Abstract

Developing new materials for the fabrication of resistive random-access memory is of great significance in this period of big data. Herein, we present a novel design strategy of embedding donor (D) and acceptor (A) fragments into imine-linked frameworks to construct resistive switching covalent organic frameworks (COFs) for high-performance memristors. Two D-A-type two-dimensional COFs, COF-BT-TT and COF-TT-TVT, were designed and synthesized using a conventional solvothermal approach, and high-quality thin films of these materials deposited on ITO substrate exhibited great potential as an active layer for memristors. Rewritable memristors based on 100 nm thick COF-TT-BT and COF-TT-TVT films showed a high ON/OFF current ratio (ca. 10 and 10 ) and low driving voltage (1.30 and 1.60 V). The cycle period and retention time for COF-TT-BT-based rewritable devices were as high as 319 cycles and 3.3×10  s at a constant voltage of 0.1 V (160 cycles and 1.2×10  s for the COF-TT-TVT memristor).

摘要

在大数据时代,开发用于制造电阻式随机存取存储器的新材料具有重要意义。在此,我们提出了一种新颖的设计策略,即将供体(D)和受体(A)片段嵌入亚胺连接的框架中,以构建用于高性能忆阻器的电阻式开关共价有机框架(COF)。使用传统的溶剂热法设计并合成了两种D-A型二维COF,即COF-BT-TT和COF-TT-TVT,并且这些材料在ITO衬底上沉积的高质量薄膜作为忆阻器的活性层显示出巨大潜力。基于100 nm厚的COF-TT-BT和COF-TT-TVT薄膜的可重写忆阻器显示出高的开/关电流比(约为10和10)和低驱动电压(1.30和1.60 V)。基于COF-TT-BT的可重写器件在0.1 V恒定电压下的循环周期和保持时间分别高达319个循环和3.3×10 s(对于COF-TT-TVT忆阻器为160个循环和1.2×10 s)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验