Department of Food Science, University of Tennessee, Knoxville, TN, USA.
Center for Agricultural Synthetic Biology, University of Tennessee Institute of Agriculture, Knoxville, TN, USA.
Plant Biotechnol J. 2022 Feb;20(2):360-373. doi: 10.1111/pbi.13717. Epub 2021 Oct 24.
In the age of synthetic biology, plastid engineering requires a nimble platform to introduce novel synthetic circuits in plants. While effective for integrating relatively small constructs into the plastome, plastid engineering via homologous recombination of transgenes is over 30 years old. Here we show the design-build-test of a novel synthetic genome structure that does not disturb the native plastome: the 'mini-synplastome'. The mini-synplastome was inspired by dinoflagellate plastome organization, which is comprised of numerous minicircles residing in the plastid instead of a single organellar genome molecule. The first mini-synplastome in plants was developed in vitro to meet the following criteria: (i) episomal replication in plastids; (ii) facile cloning; (iii) predictable transgene expression in plastids; (iv) non-integration of vector sequences into the endogenous plastome; and (v) autonomous persistence in the plant over generations in the absence of exogenous selection pressure. Mini-synplastomes are anticipated to revolutionize chloroplast biotechnology, enable facile marker-free plastid engineering, and provide an unparalleled platform for one-step metabolic engineering in plants.
在合成生物学时代,质体工程需要一个灵活的平台来在植物中引入新型合成回路。虽然同源重组转基因有效地将相对较小的构建体整合到质体中,但质体工程通过同源重组转基因已经有 30 多年的历史了。在这里,我们展示了一种新型合成基因组结构的设计-构建-测试,该结构不会干扰天然质体:“迷你质体基因组”。迷你质体基因组的灵感来自于甲藻质体的组织,它由许多位于质体中的小型环状物组成,而不是单个细胞器基因组分子。第一个植物迷你质体基因组是在体外开发的,以满足以下标准:(i)在质体中进行附加体复制;(ii)易于克隆;(iii)在质体中可预测的转基因表达;(iv)载体序列不整合到内源性质体基因组中;以及(v)在没有外源选择压力的情况下,植物在数代中自主存在。迷你质体基因组有望彻底改变叶绿体生物技术,实现简便的无标记质体工程,并为植物的一步代谢工程提供无与伦比的平台。