Max-Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
Center for Synthetic Microbiology, Philipps-Universität Marburg, 35032 Marburg, Germany.
ACS Synth Biol. 2024 Aug 16;13(8):2412-2424. doi: 10.1021/acssynbio.4c00117. Epub 2024 Jul 19.
Climate change poses a significant threat to global agriculture, necessitating innovative solutions. Plant synthetic biology, particularly chloroplast engineering, holds promise as a viable approach to this challenge. Chloroplasts present a variety of advantageous traits for genetic engineering, but the development of genetic tools and genetic part characterization in these organelles is hindered by the lengthy time scales required to generate transplastomic organisms. To address these challenges, we have established a versatile protocol for generating highly active chloroplast-based cell-free gene expression (CFE) systems derived from a diverse range of plant species, including wheat (monocot), spinach, and poplar trees (dicots). We show that these systems work with conventionally used T7 RNA polymerase as well as the endogenous chloroplast polymerases, allowing for detailed characterization and prototyping of regulatory sequences at both transcription and translation levels. To demonstrate the platform for characterization of promoters and 5' and 3' untranslated regions (UTRs) in higher plant chloroplast gene expression, we analyze a collection of 23 5'UTRs, 10 3'UTRs, and 6 chloroplast promoters, assessed their expression in spinach and wheat extracts, and found consistency in expression patterns, suggesting cross-species compatibility. Looking forward, our chloroplast CFE systems open new avenues for plant synthetic biology, offering prototyping tools for both understanding gene expression and developing engineered plants, which could help meet the demands of a changing global climate.
气候变化对全球农业构成重大威胁,需要创新解决方案。植物合成生物学,特别是叶绿体工程,是应对这一挑战的可行方法。叶绿体具有多种有利的遗传工程特性,但由于需要很长时间才能产生质体转化体,因此这些细胞器中的遗传工具和遗传部件特征的开发受到阻碍。为了解决这些挑战,我们已经建立了一种通用的方法,用于从包括小麦(单子叶植物)、菠菜和杨树(双子叶植物)在内的各种植物物种中生成高效的基于叶绿体的无细胞基因表达(CFE)系统。我们表明,这些系统可与常规使用的 T7 RNA 聚合酶以及内源性叶绿体聚合酶一起使用,从而可以在转录和翻译水平上对调节序列进行详细的表征和原型设计。为了展示该平台在高等植物叶绿体基因表达中对启动子和 5'和 3'非翻译区(UTR)的表征,我们分析了 23 个 5'UTR、10 个 3'UTR 和 6 个叶绿体启动子,评估了它们在菠菜和小麦提取物中的表达情况,并发现了表达模式的一致性,表明具有跨物种兼容性。展望未来,我们的叶绿体 CFE 系统为植物合成生物学开辟了新途径,为理解基因表达和开发工程植物提供了原型工具,这有助于满足不断变化的全球气候的需求。