Suppr超能文献

镍催化的还原羧化和酰胺化反应。

Nickel-Catalyzed Reductive Carboxylation and Amidation Reactions.

机构信息

Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.

Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain.

出版信息

Acc Chem Res. 2021 Oct 19;54(20):3941-3952. doi: 10.1021/acs.accounts.1c00480. Epub 2021 Sep 29.

Abstract

The ubiquity and importance of carboxylic acids and amides in peptides, pharmaceuticals, agrochemicals, and synthetic materials has challenged chemists to design catalytic carboxylation and amidation protocols. They represent a powerful alternative to canonical oxidation of alcohols and aldehydes, hydrolysis of nitriles, transamidation reactions, or condensation techniques for the synthesis of these functional groups. Among various scenarios, the recent years have witnessed considerable advances in Ni-catalyzed reductive carboxylation and amidation reactions utilizing carbon dioxide and isocyanate counterparts. This Account aims to highlight the progress made in this arena with a historical perspective, with particular emphasis on the methodologies that have emanated from our laboratories without losing sight of the underlying principles by which these reactions operate, with the ultimate goal of allowing the transition from comprehension to prediction in this exciting field.Unlike the utilization of conventional polar yet highly reactive organometallic reagents in carboxylation or amidation reactions, the utilization of nickel catalysts has allowed the use of carbon dioxide and isocyanates with less reactive and less-polarized counterparts for the formations of carboxylic acids and amides. These less reactive groups include organic halides and pseudohalides (i.e., alkyl bromides and chlorides, esters, alcohols, and ammonium salts), unsaturated hydrocarbons (i.e., alkynes, styrenes, unactivated alkenes, and dienes) or even C-H bonds, where forging the targeted C-C bond at previously unfunctionalized C-H linkages was possible, thus giving access to densely functionalized compounds that would be difficult to access otherwise. The C-H functionalization includes chain-walking scenarios, where subtle changes in the ligand and reaction conditions marked the selectivity of the transformations, and reactions via a [1,4]-Ni shift, where selective carboxylation in aromatic rings could be achieved. Conceptuality and practicality aside, these transformations have even offered the possibility of modulating and dictating the site-selectivity pattern, thus providing not only new vistas when controlling the selectivity of bond-forming reactions at specific sites within the side chain but also new knowledge in retrosynthetic analysis when accessing carboxylic acids and amide backbones. Importantly, these techniques have shown to be particularly suited for the preparation of isotopically labeled molecules when using CO or even CO, thus becoming a useful endeavor in the drug discovery pipeline. Although mechanistic understanding at the molecular level still constitutes the "Achilles heel" of these transformations, the recent empirical discoveries and the rapid adoption of these protocols by the community augurs well for the widespread utilization of reductive carboxylation and amidation reactions in both academic and industrial laboratories.

摘要

羧酸和酰胺在肽、药物、农用化学品和合成材料中的普遍性和重要性促使化学家设计催化羧化和酰胺化的方案。这些方案为醇和醛的经典氧化、腈的水解、转酰胺反应或这些官能团合成的缩合技术提供了一种强大的替代方法。在各种情况下,近年来在利用二氧化碳和异氰酸酯作为反应物的镍催化还原羧化和酰胺化反应方面取得了相当大的进展。本综述旨在从历史的角度突出这一领域的进展,特别强调我们实验室提出的方法,但同时也不忽视这些反应的操作原理,最终目标是使这个令人兴奋的领域从理解过渡到预测。与利用传统的极性但反应性很强的有机金属试剂进行羧化或酰胺化反应不同,利用镍催化剂可以使用反应性和极性较低的二氧化碳和异氰酸酯作为反应物来形成羧酸和酰胺。这些反应性较低的基团包括有机卤化物和拟卤化物(如烷基溴化物和氯化物、酯类、醇类和铵盐)、不饱和烃类(如炔烃、苯乙烯、非活化烯烃和二烯烃)甚至 C-H 键,在这些键中,通过以前未官能化的 C-H 键形成目标 C-C 键是可能的,从而获得难以获得的高度官能化的化合物。C-H 官能化包括链行走的情况,其中配体和反应条件的细微变化标记了转化的选择性,以及通过[1,4]-Ni 迁移的反应,其中可以在芳环中实现选择性羧化。除了概念性和实用性之外,这些转化甚至提供了调节和决定位点选择性模式的可能性,因此不仅为控制侧链中特定部位的键形成反应的选择性提供了新的视角,而且在访问羧酸和酰胺骨架时也为逆合成分析提供了新的知识。重要的是,当使用 CO 甚至 CO 时,这些技术已经显示出特别适合制备同位素标记的分子,因此成为药物发现管道中的一项有用的工作。尽管在分子水平上的机理理解仍然是这些转化的“阿喀琉斯之踵”,但最近的经验发现和社区对这些方案的快速采用为在学术和工业实验室中广泛应用还原羧化和酰胺化反应带来了良好的前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验