Center for Molecular Biology "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain.
Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, 28031, Spain.
Sci Transl Med. 2021 Sep 29;13(613):eabe7104. doi: 10.1126/scitranslmed.abe7104.
Huntington’s disease (HD) is a hereditary neurodegenerative disorder of the basal ganglia for which disease-modifying treatments are not yet available. Although gene-silencing therapies are currently being tested, further molecular mechanisms must be explored to identify druggable targets for HD. Cytoplasmic polyadenylation element binding proteins 1 to 4 (CPEB1 to CPEB4) are RNA binding proteins that repress or activate translation of CPE-containing transcripts by shortening or elongating their poly(A) tail. Here, we found increased CPEB1 and decreased CPEB4 protein in the striatum of patients and mouse models with HD. This correlated with a reprogramming of polyadenylation in 17.3% of the transcriptome, markedly affecting neurodegeneration-associated genes including , , , , , , , , , and and suggesting a new molecular mechanism in neurodegenerative disease etiology. We found decreased protein content of top deadenylated transcripts, including striatal atrophy–linked genes not previously related to HD, such as and the easily druggable (the ThTr2 thiamine transporter). Mutations in cause biotin-thiamine–responsive basal ganglia disease (BTBGD), a striatal disorder that can be treated with a combination of biotin and thiamine. Similar to patients with BTBGD, patients with HD demonstrated decreased thiamine in the cerebrospinal fluid. Furthermore, patients and mice with HD showed decreased striatal concentrations of thiamine pyrophosphate (TPP), the metabolically active form of thiamine. High-dose biotin and thiamine treatment prevented TPP deficiency in HD mice and attenuated the radiological, neuropathological, and motor HD-like phenotypes, revealing an easily implementable therapy that might benefit patients with HD.
亨廷顿病(HD)是一种基底神经节遗传性神经退行性疾病,目前尚无治疗方法。尽管目前正在测试基因沉默疗法,但必须进一步探索分子机制,以确定 HD 的可用药靶标。细胞质多聚腺苷酸化元件结合蛋白 1 至 4(CPEB1 至 CPEB4)是 RNA 结合蛋白,通过缩短或延长其多聚 A 尾巴来抑制或激活含有 CPE 的转录物的翻译。在这里,我们发现 HD 患者和小鼠模型的纹状体中 CPEB1 蛋白增加,CPEB4 蛋白减少。这与 17.3%的转录组中的多聚腺苷酸化重新编程相关,明显影响神经退行性疾病相关基因,包括、、、、、、、、和,表明神经退行性疾病病因学中的一个新的分子机制。我们发现大多数去腺苷酸化转录物的蛋白含量降低,包括以前与 HD 无关的纹状体萎缩相关基因,如和易于用药的(ThTr2 硫胺素转运体)。基因突变导致生物素-硫胺素反应性基底神经节疾病(BTBGD),一种纹状体疾病,可以用生物素和硫胺素联合治疗。与 BTBGD 患者相似,HD 患者的脑脊液中硫胺素减少。此外,HD 患者和小鼠的纹状体中硫胺素焦磷酸(TPP)浓度降低,TPP 是硫胺素的代谢活性形式。高剂量生物素和硫胺素治疗可预防 HD 小鼠 TPP 缺乏,并减轻放射学、神经病理学和运动性 HD 样表型,揭示了一种易于实施的治疗方法,可能使 HD 患者受益。