Hicks David A, Aubrey Liam D, Kwok Jessica C F, Radford Sheena E
Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
J Neurochem. 2025 Sep;169(9):e70226. doi: 10.1111/jnc.70226.
Memory formation involves a complex interplay of molecular and cellular processes, including synaptic plasticity mechanisms such as long-term potentiation (LTP) and long-term depression (LTD). These processes rely on activity-dependent gene expression and local protein synthesis at synapses. A central unresolved question in neuroscience is how memories can be stably maintained over time, despite the transient nature of the proteins involved in their initial encoding. A key candidate addressing this 'maintenance paradox' is the CPEB (cytoplasmic polyadenylation element-binding protein) family, particularly CPEB3. CPEBs are RNA-binding proteins that regulate the polyadenylation and translation of dormant mRNAs, enabling synaptic tagging and memory consolidation. CPEB3 has been shown to modulate the expression of critical synaptic proteins, including AMPA and NMDA receptor subunits, thereby influencing synaptic strength and long-term memory persistence. Structurally, CPEB3 features a disordered N-terminal domain (NTD) enriched in glutamine and proline residues, which may facilitate reversible aggregation and phase separation and an actin-binding domain, potentially supporting its localisation to ribonucleoprotein granules. The highly conserved C-terminal domain (CTD) contains RNA-recognition motifs essential for mRNA binding. Together, these structural features may enable CPEB3 to function as a molecular switch, linking synaptic activity to enduring changes in protein synthesis and memory encoding. Here, we review the current understanding of the function of CPEB3, highlighting current hypotheses and debates of the role(s) of protein self-assembly in memory formation.
记忆形成涉及分子和细胞过程的复杂相互作用,包括突触可塑性机制,如长时程增强(LTP)和长时程抑制(LTD)。这些过程依赖于突触处的活动依赖性基因表达和局部蛋白质合成。神经科学中一个尚未解决的核心问题是,尽管参与记忆初始编码的蛋白质具有短暂性,但记忆如何能随时间稳定维持。解决这个“维持悖论”的一个关键候选者是CPEB(细胞质聚腺苷酸化元件结合蛋白)家族,特别是CPEB3。CPEB是RNA结合蛋白,可调节休眠mRNA的聚腺苷酸化和翻译,从而实现突触标记和记忆巩固。已表明CPEB3可调节关键突触蛋白的表达,包括AMPA和NMDA受体亚基,从而影响突触强度和长期记忆持久性。在结构上,CPEB3具有富含谷氨酰胺和脯氨酸残基的无序N端结构域(NTD),这可能有助于可逆聚集和相分离,以及一个肌动蛋白结合结构域,可能支持其定位于核糖核蛋白颗粒。高度保守的C端结构域(CTD)包含对mRNA结合至关重要的RNA识别基序。总之,这些结构特征可能使CPEB3能够作为分子开关发挥作用,将突触活动与蛋白质合成和记忆编码的持久变化联系起来。在此,我们综述了目前对CPEB3功能的理解,强调了当前关于蛋白质自组装在记忆形成中的作用的假设和争论。