Department of Cell Biology and Physiology (C.-J.L., B.M.H., R.A.R., R.P.M.), Washington University School of Medicine, St Louis, MO.
Cardiovascular Division, Department of Medicine (C.-J.L.), Washington University School of Medicine, St Louis, MO.
Arterioscler Thromb Vasc Biol. 2021 Dec;41(12):2890-2905. doi: 10.1161/ATVBAHA.120.315681. Epub 2021 Sep 30.
Using a mouse model of Eln (elastin) insufficiency that spontaneously develops neointima in the ascending aorta, we sought to understand the origin and phenotypic heterogeneity of smooth muscle cells (SMCs) contributing to intimal hyperplasia. We were also interested in exploring how vascular cells adapt to the absence of Eln. Approach and Results: We used single-cell sequencing together with lineage-specific cell labeling to identify neointimal cell populations in a noninjury, genetic model of neointimal formation. Inactivating Eln production in vascular SMCs results in rapid intimal hyperplasia around breaks in the ascending aorta's internal elastic lamina. Using lineage-specific drivers to both lineage mark and inactivate Eln expression in the secondary heart field and neural crest aortic SMCs, we found that cells with a secondary heart field lineage are significant contributors to neointima formation. We also identified a small population of secondary heart field-derived SMCs underneath and adjacent to the internal elastic lamina. Within the neointima of SMC-Eln knockout mice, 2 unique SMC populations were identified that are transcriptionally different from other SMCs. While these cells had a distinct gene signature, they expressed several genes identified in other studies of neointimal lesions, suggesting that some mechanisms underlying neointima formation in Eln insufficiency are shared with adult vessel injury models.
These results highlight the unique developmental origin and transcriptional signature of cells contributing to neointima in the ascending aorta. Our findings also show that the absence of Eln, or changes in elastic fiber integrity, influences the SMC biological niche in ways that lead to altered cell phenotypes.
利用一种自发性主动脉升部出现新生内膜的弹性蛋白(Eln)缺陷小鼠模型,我们试图了解参与内膜增生的平滑肌细胞(SMC)的起源和表型异质性。我们也对血管细胞如何适应缺乏 Eln 的情况感兴趣。
我们使用单细胞测序结合谱系特异性细胞标记,来鉴定非损伤性、新生内膜形成的遗传模型中的新生内膜细胞群体。在血管 SMC 中使 Eln 产生失活会导致主动脉升部内弹性膜破裂处迅速出现内膜增生。利用谱系特异性的驱动基因来对次级心脏场和神经嵴主动脉 SMC 中的 Eln 表达进行谱系标记和失活,我们发现具有次级心脏场谱系的细胞是新生内膜形成的重要贡献者。我们还在内部弹性膜下方和附近发现了一小部分源自次级心脏场的 SMC。在 SMC-Eln 敲除小鼠的新生内膜中,鉴定出 2 种独特的 SMC 群体,它们在转录上与其他 SMC 不同。虽然这些细胞具有独特的基因特征,但它们表达了其他研究中鉴定出的与新生内膜病变相关的几个基因,这表明 Eln 缺陷导致的新生内膜形成的一些机制与成人血管损伤模型共享。
这些结果突出了参与主动脉升部新生内膜形成的细胞独特的发育起源和转录特征。我们的研究结果还表明,Eln 的缺失或弹性纤维完整性的改变,以导致细胞表型改变的方式影响 SMC 的生物学龛。