Suppr超能文献

弹性蛋白、动脉力学与狭窄。

Elastin, arterial mechanics, and stenosis.

机构信息

Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri.

Cardiovascular Division, Department of Medicine, Washington University, St. Louis, Missouri.

出版信息

Am J Physiol Cell Physiol. 2022 May 1;322(5):C875-C886. doi: 10.1152/ajpcell.00448.2021. Epub 2022 Feb 23.

Abstract

Elastin is a long-lived extracellular matrix protein that is organized into elastic fibers that provide elasticity to the arterial wall, allowing stretch and recoil with each cardiac cycle. By forming lamellar units with smooth muscle cells, elastic fibers transduce tissue-level mechanics to cell-level changes through mechanobiological signaling. Altered amounts or assembly of elastic fibers leads to changes in arterial structure and mechanical behavior that compromise cardiovascular function. In particular, genetic mutations in the elastin gene () that reduce elastin protein levels are associated with focal arterial stenosis, or narrowing of the arterial lumen, such as that seen in supravalvular aortic stenosis and Williams-Beuren syndrome. Global reduction of levels in mice allows investigation of the tissue- and cell-level arterial mechanical changes and associated alterations in smooth muscle cell phenotype that may contribute to stenosis formation. A loxP-floxed allele in mice highlights cell type- and developmental origin-specific mechanobiological effects of reduced elastin amounts. production is required in distinct cell types for elastic layer formation in different parts of the mouse vasculature. deletion in smooth muscle cells from different developmental origins in the ascending aorta leads to characteristic patterns of vascular stenosis and neointima. Dissecting the mechanobiological signaling associated with local depletion and subsequent smooth muscle cell response may help develop new therapeutic interventions for elastin-related diseases.

摘要

弹性蛋白是一种长寿的细胞外基质蛋白,它组织成弹性纤维,为动脉壁提供弹性,使动脉壁在每次心脏周期中能够伸缩回弹。弹性纤维通过与平滑肌细胞形成层状单位,将组织水平的力学传递到细胞水平的变化,通过力学生物学信号转导。弹性纤维的数量或组装的改变会导致动脉结构和机械性能的改变,从而损害心血管功能。特别是,弹性蛋白基因()中的遗传突变会降低弹性蛋白水平,与局灶性动脉狭窄(如主动脉瓣上狭窄和威廉姆斯-贝伦综合征所见)相关。在小鼠中降低 水平的全身性减少可以研究动脉组织和细胞水平的机械变化以及平滑肌细胞表型的相关改变,这些改变可能导致狭窄形成。在小鼠中,loxP 基因座敲除的 等位基因突出了减少弹性蛋白数量的细胞类型和发育起源特异性力学生物学效应。 在小鼠脉管系统的不同部位形成弹性层需要不同类型的细胞中 基因的表达。 在升主动脉不同发育起源的平滑肌细胞中缺失 ,会导致血管狭窄和新生内膜的特征性模式。解析与局部 耗竭和随后的平滑肌细胞反应相关的力学生物学信号,可能有助于为与弹性蛋白相关的疾病开发新的治疗干预措施。

相似文献

1
Elastin, arterial mechanics, and stenosis.弹性蛋白、动脉力学与狭窄。
Am J Physiol Cell Physiol. 2022 May 1;322(5):C875-C886. doi: 10.1152/ajpcell.00448.2021. Epub 2022 Feb 23.
6
Effects of elastin haploinsufficiency on the mechanical behavior of mouse arteries.弹性蛋白单倍体不足对小鼠动脉力学行为的影响。
Am J Physiol Heart Circ Physiol. 2005 Sep;289(3):H1209-17. doi: 10.1152/ajpheart.00046.2005. Epub 2005 Apr 29.

引用本文的文献

10
Transcriptional regulation of postnatal aortic development.出生后主动脉发育的转录调控。
Cells Dev. 2024 Dec;180:203971. doi: 10.1016/j.cdev.2024.203971. Epub 2024 Oct 18.

本文引用的文献

7
Tropoelastin and Elastin Assembly.原弹性蛋白与弹性蛋白组装
Front Bioeng Biotechnol. 2021 Feb 25;9:643110. doi: 10.3389/fbioe.2021.643110. eCollection 2021.
9
Developmental origins of mechanical homeostasis in the aorta.主动脉机械内稳态的发育起源。
Dev Dyn. 2021 May;250(5):629-639. doi: 10.1002/dvdy.283. Epub 2021 Jan 4.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验