Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri.
Cardiovascular Division, Department of Medicine, Washington University, St. Louis, Missouri.
Am J Physiol Cell Physiol. 2022 May 1;322(5):C875-C886. doi: 10.1152/ajpcell.00448.2021. Epub 2022 Feb 23.
Elastin is a long-lived extracellular matrix protein that is organized into elastic fibers that provide elasticity to the arterial wall, allowing stretch and recoil with each cardiac cycle. By forming lamellar units with smooth muscle cells, elastic fibers transduce tissue-level mechanics to cell-level changes through mechanobiological signaling. Altered amounts or assembly of elastic fibers leads to changes in arterial structure and mechanical behavior that compromise cardiovascular function. In particular, genetic mutations in the elastin gene () that reduce elastin protein levels are associated with focal arterial stenosis, or narrowing of the arterial lumen, such as that seen in supravalvular aortic stenosis and Williams-Beuren syndrome. Global reduction of levels in mice allows investigation of the tissue- and cell-level arterial mechanical changes and associated alterations in smooth muscle cell phenotype that may contribute to stenosis formation. A loxP-floxed allele in mice highlights cell type- and developmental origin-specific mechanobiological effects of reduced elastin amounts. production is required in distinct cell types for elastic layer formation in different parts of the mouse vasculature. deletion in smooth muscle cells from different developmental origins in the ascending aorta leads to characteristic patterns of vascular stenosis and neointima. Dissecting the mechanobiological signaling associated with local depletion and subsequent smooth muscle cell response may help develop new therapeutic interventions for elastin-related diseases.
弹性蛋白是一种长寿的细胞外基质蛋白,它组织成弹性纤维,为动脉壁提供弹性,使动脉壁在每次心脏周期中能够伸缩回弹。弹性纤维通过与平滑肌细胞形成层状单位,将组织水平的力学传递到细胞水平的变化,通过力学生物学信号转导。弹性纤维的数量或组装的改变会导致动脉结构和机械性能的改变,从而损害心血管功能。特别是,弹性蛋白基因()中的遗传突变会降低弹性蛋白水平,与局灶性动脉狭窄(如主动脉瓣上狭窄和威廉姆斯-贝伦综合征所见)相关。在小鼠中降低 水平的全身性减少可以研究动脉组织和细胞水平的机械变化以及平滑肌细胞表型的相关改变,这些改变可能导致狭窄形成。在小鼠中,loxP 基因座敲除的 等位基因突出了减少弹性蛋白数量的细胞类型和发育起源特异性力学生物学效应。 在小鼠脉管系统的不同部位形成弹性层需要不同类型的细胞中 基因的表达。 在升主动脉不同发育起源的平滑肌细胞中缺失 ,会导致血管狭窄和新生内膜的特征性模式。解析与局部 耗竭和随后的平滑肌细胞反应相关的力学生物学信号,可能有助于为与弹性蛋白相关的疾病开发新的治疗干预措施。