Suppr超能文献

含有原初黑洞的中子星:最大生存时间。

Neutron stars harboring a primordial black hole: Maximum survival time.

作者信息

Baumgarte Thomas W, Shapiro Stuart L

机构信息

Department of Physics and Astronomy, Bowdoin College, Brunswick, Maine 04011, USA.

Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.

出版信息

Phys Rev D. 2021 Apr 15;103(8). doi: 10.1103/physrevd.103.l081303. Epub 2021 Apr 22.

Abstract

We explore in general relativity the survival time of neutron stars that host an endoparasitic, possibly primordial, black hole at their center. Corresponding to the minimum steady-state Bondi accretion rate for adiabatic flow that we found earlier for stiff nuclear equations of state (EOSs), we derive analytically the maximum survival time after which the entire star will be consumed by the black hole. We also show that this maximum survival time depends only weakly on the stiffness for polytropic EOSs with Γ ≥ 5/3, so that this survival time assumes a nearly universal value that depends on the initial black-hole mass alone. Establishing such a value is important for constraining the contribution of primordial black holes in the mass range 10 ≲ ≲ 10 to the dark-matter content of the Universe.

摘要

我们在广义相对论中探究了在其中心存在一个内寄生的、可能是原初的黑洞的中子星的存活时间。对应于我们之前针对刚性核态方程(EOS)所发现的绝热流的最小稳态邦迪吸积率,我们解析地推导出了整个恒星将被黑洞吞噬之前的最大存活时间。我们还表明,对于多方态方程(\Gamma \geq 5/3),这个最大存活时间仅微弱地依赖于其刚性,所以这个存活时间假定了一个几乎仅依赖于初始黑洞质量的普适值。确定这样一个值对于限制质量范围在(10^{22} \lesssim M \lesssim 10^{24})的原初黑洞对宇宙暗物质含量的贡献很重要。

相似文献

1
Neutron stars harboring a primordial black hole: Maximum survival time.
Phys Rev D. 2021 Apr 15;103(8). doi: 10.1103/physrevd.103.l081303. Epub 2021 Apr 22.
2
Accretion onto a small black hole at the center of a neutron star.
Phys Rev D. 2021 May 15;103(10). doi: 10.1103/physrevd.103.104009. Epub 2021 May 6.
3
Relativistic Bondi accretion for stiff equations of state.
Mon Not R Astron Soc. 2021 Apr;502(2):3003-3011. doi: 10.1093/mnras/stab161. Epub 2021 Jan 20.
4
Black-Hole Remnants from Black-Hole-Neutron-Star Mergers.
Phys Rev Lett. 2019 Jul 26;123(4):041102. doi: 10.1103/PhysRevLett.123.041102.
5
Search for Subsolar-Mass Ultracompact Binaries in Advanced LIGO's First Observing Run.
Phys Rev Lett. 2018 Dec 7;121(23):231103. doi: 10.1103/PhysRevLett.121.231103.
6
Probing Primordial Black Hole Dark Matter with Gravitational Waves.
Phys Rev Lett. 2017 Sep 29;119(13):131301. doi: 10.1103/PhysRevLett.119.131301. Epub 2017 Sep 28.
7
NonPrimordial Solar Mass Black Holes.
Phys Rev Lett. 2018 Nov 30;121(22):221102. doi: 10.1103/PhysRevLett.121.221102.
8
Was GW190814 a Black Hole-Strange Quark Star System?
Phys Rev Lett. 2021 Apr 23;126(16):162702. doi: 10.1103/PhysRevLett.126.162702.
9
BINARY NEUTRON STAR MERGERS: A JET ENGINE FOR SHORT GAMMA-RAY BURSTS.
Astrophys J Lett. 2016 Jun 10;824(1). doi: 10.3847/2041-8205/824/1/L6. Epub 2016 Jun 3.
10
Black Hole-Neutron Star Mergers as Central Engines of Gamma-Ray Bursts.
Astrophys J. 1999 Dec 10;527(1):L39-L42. doi: 10.1086/312397.

引用本文的文献

1
Accretion onto a small black hole at the center of a neutron star.
Phys Rev D. 2021 May 15;103(10). doi: 10.1103/physrevd.103.104009. Epub 2021 May 6.
2
Gravitational waves from disks around spinning black holes: Simulations in full general relativity.
Phys Rev D. 2021 Feb 15;103(4). doi: 10.1103/physrevd.103.043013. Epub 2021 Feb 23.

本文引用的文献

1
Constraints on primordial black holes.
Rep Prog Phys. 2021 Dec 2;84(11). doi: 10.1088/1361-6633/ac1e31.
2
Accretion onto a small black hole at the center of a neutron star.
Phys Rev D. 2021 May 15;103(10). doi: 10.1103/physrevd.103.104009. Epub 2021 May 6.
3
Relativistic Bondi accretion for stiff equations of state.
Mon Not R Astron Soc. 2021 Apr;502(2):3003-3011. doi: 10.1093/mnras/stab161. Epub 2021 Jan 20.
4
Test for the Origin of Solar Mass Black Holes.
Phys Rev Lett. 2021 Feb 19;126(7):071101. doi: 10.1103/PhysRevLett.126.071101.
5
Did NANOGrav See a Signal from Primordial Black Hole Formation?
Phys Rev Lett. 2021 Feb 5;126(5):051303. doi: 10.1103/PhysRevLett.126.051303.
6
GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass.
Phys Rev D. 2018 Jan 15;97(2). doi: 10.1103/PhysRevD.97.021501. Epub 2018 Jan 11.
7
GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral.
Phys Rev Lett. 2017 Oct 20;119(16):161101. doi: 10.1103/PhysRevLett.119.161101. Epub 2017 Oct 16.
8
Primordial Black Holes and r-Process Nucleosynthesis.
Phys Rev Lett. 2017 Aug 11;119(6):061101. doi: 10.1103/PhysRevLett.119.061101. Epub 2017 Aug 7.
9
Detecting dark matter with imploding pulsars in the galactic center.
Phys Rev Lett. 2014 Nov 7;113(19):191301. doi: 10.1103/PhysRevLett.113.191301. Epub 2014 Nov 3.
10
Weakly interacting massive particles and neutron stars.
Phys Rev D Part Fields. 1989 Nov 15;40(10):3221-3230. doi: 10.1103/physrevd.40.3221.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验