Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland.
Department of Environmental Microbiology, Eawag, Dübendorf, Switzerland.
Methods Mol Biol. 2021;2357:107-124. doi: 10.1007/978-1-0716-1621-5_8.
Nutrient limitation is one of the most common triggers of antibiotic tolerance and persistence. Here, we present two microfluidic setups to study how spatial and temporal variation in nutrient availability lead to increased survival of bacteria to antibiotics. The first setup is designed to mimic the growth dynamics of bacteria in spatially structured populations (e.g., biofilms) and can be used to study how spatial gradients in nutrient availability, created by the collective metabolic activity of a population, increase antibiotic tolerance. The second setup captures the dynamics of feast-and-famine cycles that bacteria recurrently encounter in nature, and can be used to study how phenotypic heterogeneity in growth resumption after starvation increases survival of clonal bacterial populations. In both setups, the growth rates and metabolic activity of bacteria can be measured at the single-cell level. This is useful to build a mechanistic understanding of how spatiotemporal variation in nutrient availability triggers bacteria to enter phenotypic states that increase their tolerance to antibiotics.
营养限制是抗生素耐药性和持久性形成的最常见原因之一。在这里,我们提出了两种微流控装置,用于研究营养物质可用性的时空变化如何导致细菌对抗生素的存活能力增加。第一个装置旨在模拟空间结构种群(例如生物膜)中细菌的生长动态,可用于研究由群体的集体代谢活性产生的营养物质可用性空间梯度如何增加抗生素耐受性。第二个装置捕获了细菌在自然界中反复遇到的饱食-饥饿循环的动态,可以用于研究饥饿后生长恢复的表型异质性如何增加克隆细菌种群的存活率。在这两种装置中,都可以在单细胞水平上测量细菌的生长速率和代谢活性。这对于建立关于营养物质可用性的时空变化如何引发细菌进入增加其对抗生素耐受性的表型状态的机制理解很有用。