Suppr超能文献

通过考虑营养限制来模拟生物膜中的抗生素耐受性。

Modeling antibiotic tolerance in biofilms by accounting for nutrient limitation.

作者信息

Roberts Mark E, Stewart Philip S

机构信息

Center for Biofilm Engineering and Department of Chemical and Biological Engineering, Montana State University-Bozeman, Bozeman, Montana 59717-3980, USA.

出版信息

Antimicrob Agents Chemother. 2004 Jan;48(1):48-52. doi: 10.1128/AAC.48.1.48-52.2004.

Abstract

A mathematical model of biofilm dynamics was used to investigate the protection from antibiotic killing that can be afforded to microorganisms in biofilms based on a mechanism of localized nutrient limitation and slow growth. The model assumed that the rate of killing by the antibiotic was directly proportional to the local growth rate. Growth rates in the biofilm were calculated by using the local concentration of a single growth-limiting substrate with Monod kinetics. The concentration profile of this metabolic substrate was calculated by solving a reaction-diffusion problem. The model predicted the following features: stratified patterns of growth with zones of no growth in the biofilm interior, slow killing of biofilm microorganisms that was further retarded as the initial biofilm thickness increased, nonuniform spatial patterns of killing inside the biofilm, biofilm killing rates that decrease in a nonlinear way as the concentration of the growth-limiting substrate feeding the biofilm is decreased, and heightened tolerance when external mass transfer resistance is manifested. This modeling study also provides motivation for further investigation of a hypothetical cell state in which damaged cells score as nonviable but continue to consume substrate. The existence of such a cell state can further retard biofilm killing, according to the simulations. The results support the important contributions of nutrient limitation and slow growth to the antibiotic tolerance of microorganisms in biofilms.

摘要

基于局部营养限制和缓慢生长机制,利用生物膜动力学的数学模型研究生物膜中微生物对抗生素杀灭作用的防护。该模型假设抗生素的杀灭速率与局部生长速率成正比。通过使用单一生长限制底物的局部浓度和莫诺德动力学来计算生物膜中的生长速率。通过求解反应扩散问题来计算这种代谢底物的浓度分布。该模型预测了以下特征:生物膜内部存在分层生长模式且有不生长区域、生物膜微生物的缓慢杀灭随着初始生物膜厚度增加而进一步延迟、生物膜内部杀灭的空间模式不均匀、随着供给生物膜的生长限制底物浓度降低,生物膜杀灭速率呈非线性下降以及当表现出外部传质阻力时耐受性增强。这项建模研究还为进一步研究一种假设的细胞状态提供了动力,在这种状态下受损细胞虽被视为无活力但仍继续消耗底物。根据模拟结果,这种细胞状态的存在会进一步延迟生物膜的杀灭。结果支持了营养限制和缓慢生长对生物膜中微生物抗生素耐受性的重要贡献。

相似文献

1
Modeling antibiotic tolerance in biofilms by accounting for nutrient limitation.
Antimicrob Agents Chemother. 2004 Jan;48(1):48-52. doi: 10.1128/AAC.48.1.48-52.2004.
2
Modelling protection from antimicrobial agents in biofilms through the formation of persister cells.
Microbiology (Reading). 2005 Jan;151(Pt 1):75-80. doi: 10.1099/mic.0.27385-0.
3
4
Simulation-Based Exploration of Quorum Sensing Triggered Resistance of Biofilms to Antibiotics.
Bull Math Biol. 2018 Jul;80(7):1736-1775. doi: 10.1007/s11538-018-0433-3. Epub 2018 Apr 24.
5
Biofilm accumulation model that predicts antibiotic resistance of Pseudomonas aeruginosa biofilms.
Antimicrob Agents Chemother. 1994 May;38(5):1052-8. doi: 10.1128/AAC.38.5.1052.
6
A three-dimensional computer model of four hypothetical mechanisms protecting biofilms from antimicrobials.
Appl Environ Microbiol. 2006 Mar;72(3):2005-13. doi: 10.1128/AEM.72.3.2005-2013.2006.
7
Surviving as a Community: Antibiotic Tolerance and Persistence in Bacterial Biofilms.
Cell Host Microbe. 2019 Jul 10;26(1):15-21. doi: 10.1016/j.chom.2019.06.002.
8
A model of optimal dosing of antibiotic treatment in biofilm.
Math Biosci Eng. 2014 Jun;11(3):547-71. doi: 10.3934/mbe.2014.11.547.
9
Modelling biofilm-induced formation damage and biocide treatment in subsurface geosystems.
Microb Biotechnol. 2013 Jan;6(1):53-66. doi: 10.1111/1751-7915.12002. Epub 2012 Nov 20.
10
Biofilms and antimicrobial resistance.
Clin Orthop Relat Res. 2005 Aug(437):41-7. doi: 10.1097/01.blo.0000175714.68624.74.

引用本文的文献

1
Towards improved biofilm models.
Nat Rev Microbiol. 2025 Jan;23(1):57-66. doi: 10.1038/s41579-024-01086-2. Epub 2024 Aug 7.
2
Flip the switch: the role of FleQ in modulating the transition between the free-living and sessile mode of growth in .
J Bacteriol. 2024 Mar 21;206(3):e0036523. doi: 10.1128/jb.00365-23. Epub 2024 Mar 4.
4
Pharmacodynamic Model of the Dynamic Response of Biofilms to Antibacterial Treatments.
Biomedicines. 2023 Aug 21;11(8):2316. doi: 10.3390/biomedicines11082316.
5
Simulation of catalase-dependent tolerance of microbial biofilm to hydrogen peroxide with a biofilm computer model.
NPJ Biofilms Microbiomes. 2023 Aug 23;9(1):60. doi: 10.1038/s41522-023-00426-z.
6
Whole-cell modeling of E. coli colonies enables quantification of single-cell heterogeneity in antibiotic responses.
PLoS Comput Biol. 2023 Jun 16;19(6):e1011232. doi: 10.1371/journal.pcbi.1011232. eCollection 2023 Jun.
8
Modeling Polygenic Antibiotic Resistance Evolution in Biofilms.
Front Microbiol. 2022 Jul 7;13:916035. doi: 10.3389/fmicb.2022.916035. eCollection 2022.

本文引用的文献

1
Modeling biocide action against biofilms.
Biotechnol Bioeng. 1996 Feb 20;49(4):445-55. doi: 10.1002/(SICI)1097-0290(19960220)49:4<445::AID-BIT12>3.0.CO;2-9.
2
Mathematical modeling of mixed-culture biofilms.
Biotechnol Bioeng. 1996 Jan 20;49(2):172-84. doi: 10.1002/(SICI)1097-0290(19960120)49:2<172::AID-BIT6>3.0.CO;2-N.
3
Effects of biofilm structures on oxygen distribution and mass transport.
Biotechnol Bioeng. 1994 May;43(11):1131-8. doi: 10.1002/bit.260431118.
5
Biofilms: survival mechanisms of clinically relevant microorganisms.
Clin Microbiol Rev. 2002 Apr;15(2):167-93. doi: 10.1128/CMR.15.2.167-193.2002.
6
Antibiotic resistance of bacteria in biofilms.
Lancet. 2001 Jul 14;358(9276):135-8. doi: 10.1016/s0140-6736(01)05321-1.
7
Biofilm resistance to antimicrobial agents.
Microbiology (Reading). 2000 Mar;146 ( Pt 3):547-549. doi: 10.1099/00221287-146-3-547.
8
Distribution of bacterial growth activity in flow-chamber biofilms.
Appl Environ Microbiol. 1999 Sep;65(9):4108-17. doi: 10.1128/AEM.65.9.4108-4117.1999.
9
Bacterial biofilms: a common cause of persistent infections.
Science. 1999 May 21;284(5418):1318-22. doi: 10.1126/science.284.5418.1318.
10
Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability.
Appl Environ Microbiol. 1998 Oct;64(10):4035-9. doi: 10.1128/AEM.64.10.4035-4039.1998.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验