Suppr超能文献

从头开始直接动力学。

Ab Initio Direct Dynamics.

机构信息

Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States.

出版信息

Acc Chem Res. 2021 Oct 19;54(20):3749-3759. doi: 10.1021/acs.accounts.1c00390. Epub 2021 Sep 30.

Abstract

The reactivity and dynamics of molecular systems can be explored computationally by classical trajectory calculations. The traditional approach involves fitting a functional form of a potential energy surface (PES) to the energies from a large number of electronic structure calculations and then integrating numerous trajectories on this fitted PES to model the molecular dynamics. The ever-decreasing cost of computing and continuing advances in computational chemistry software have made it possible to use electronic structure calculations directly in molecular dynamics simulations without first having to construct a fitted PES. In this "on-the-fly" approach, every time the energy and its derivatives are needed for the integration of the equations of motion, they are obtained directly from quantum chemical calculations. This approach started to become practical in the mid-1990s as a result of increased availability of inexpensive computer resources and improved computational chemistry software. The application of direct dynamics calculations has grown rapidly over the last 25 years and would require a lengthy review article. The present Account is limited to some of our contributions to methods development and various applications. To improve the efficiency of direct dynamics calculations, we developed a Hessian-based predictor-corrector algorithm for integrating classical trajectories. Hessian updating made this even more efficient. This approach was also used to improve algorithms for following the steepest descent reaction paths. For larger molecular systems, we developed an extended Lagrangian approach in which the electronic structure is propagated along with the molecular structure. Strong field chemistry is a rapidly growing area, and to improve the accuracy of molecular dynamics in intense laser fields, we included the time-varying electric field in a novel predictor-corrector trajectory integration algorithm. Since intense laser fields can excite and ionize molecules, we extended our studies to include electron dynamics. Specifically, we developed code for time-dependent configuration interaction electron dynamics to simulate strong field ionization by intense laser pulses. Our initial application of ab initio direct dynamics in 1994 was to CHO → H + CO; the calculated vibrational distributions in the products were in very good agreement with experiment. In the intervening years, we have used direct dynamics to explore energy partitioning in various dissociation reactions, unimolecular dissociations yielding three fragments, reactions with branching after the transition state, nonstatistical dynamics of chemically activated molecules, dynamics of molecular fragmentation by intense infrared laser pulses, selective activation of specific dissociation channels by aligned intense infrared laser fields, angular dependence of strong field ionization, and simulation of sequential double ionization.

摘要

分子体系的反应性和动力学可以通过经典轨迹计算来进行计算。传统的方法涉及到拟合势能面(PES)的函数形式,以适应大量电子结构计算的能量,然后在这个拟合的 PES 上积分大量轨迹,以模拟分子动力学。计算成本的不断降低和计算化学软件的不断进步,使得在不首先构建拟合 PES 的情况下,直接在分子动力学模拟中使用电子结构计算成为可能。在这种“实时”方法中,每次需要整合运动方程的能量及其导数时,它们都是直接从量子化学计算中获得的。由于廉价计算机资源的可用性增加和计算化学软件的改进,这种方法在 20 世纪 90 年代中期开始变得可行。直接动力学计算的应用在过去的 25 年中迅速发展,需要一篇冗长的综述文章。本报告仅限于我们在方法开发和各种应用方面的一些贡献。为了提高直接动力学计算的效率,我们开发了一种基于 Hessian 的预测-校正算法,用于整合经典轨迹。Hessian 更新使其更加高效。这种方法也被用于改进沿着最陡下降反应路径的算法。对于更大的分子体系,我们开发了一种扩展的拉格朗日方法,其中电子结构与分子结构一起传播。强场化学是一个快速发展的领域,为了提高分子动力学在强激光场中的准确性,我们在一个新的预测-校正轨迹积分算法中包括了时变电场。由于强激光场可以激发和电离分子,我们将研究扩展到包括电子动力学。具体来说,我们开发了用于时间相关组态相互作用电子动力学的代码,以模拟强激光脉冲的强场电离。我们在 1994 年首次将从头算直接动力学应用于 CHO→H+CO;产物中的振动分布与实验非常吻合。在这几年里,我们使用直接动力学方法来探索各种解离反应中的能量分配、生成三个碎片的单分子分解、过渡态后的分支反应、化学激活分子的非统计动力学、强红外激光脉冲引起的分子碎裂动力学、强红外激光场选择性激活特定的解离通道、强场电离的角依赖性以及顺序双电离的模拟。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验