Suppr超能文献

第一性原理反应发现:从薛定谔方程到甲烷热解的实验预测

First principles reaction discovery: from the Schrodinger equation to experimental prediction for methane pyrolysis.

作者信息

Xu Rui, Meisner Jan, Chang Alexander M, Thompson Keiran C, Martínez Todd J

机构信息

Department of Chemistry, The PULSE Institute, Stanford University Stanford CA 94305 USA

SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA.

出版信息

Chem Sci. 2023 Jun 9;14(27):7447-7464. doi: 10.1039/d3sc01202f. eCollection 2023 Jul 12.

Abstract

Our recent success in exploiting graphical processing units (GPUs) to accelerate quantum chemistry computations led to the development of the nanoreactor, a computational framework for automatic reaction discovery and kinetic model construction. In this work, we apply the nanoreactor to methane pyrolysis, from automatic reaction discovery to path refinement and kinetic modeling. Elementary reactions occurring during methane pyrolysis are revealed using GPU-accelerated molecular dynamics simulations. Subsequently, these reaction paths are refined at a higher level of theory with optimized reactant, product, and transition state geometries. Reaction rate coefficients are calculated by transition state theory based on the optimized reaction paths. The discovered reactions lead to a kinetic model with 53 species and 134 reactions, which is validated against experimental data and simulations using literature kinetic models. We highlight the advantage of leveraging local brute force and Monte Carlo sensitivity analysis approaches for efficient identification of important reactions. Both sensitivity approaches can further improve the accuracy of the methane pyrolysis kinetic model. The results in this work demonstrate the power of the nanoreactor framework for computationally affordable systematic reaction discovery and accurate kinetic modeling.

摘要

我们最近在利用图形处理单元(GPU)加速量子化学计算方面取得的成功,促成了纳米反应器的开发,这是一个用于自动反应发现和动力学模型构建的计算框架。在这项工作中,我们将纳米反应器应用于甲烷热解,从自动反应发现到路径优化和动力学建模。利用GPU加速的分子动力学模拟揭示了甲烷热解过程中发生的基元反应。随后,在更高的理论水平上,通过优化反应物、产物和过渡态几何结构来优化这些反应路径。基于优化后的反应路径,通过过渡态理论计算反应速率系数。发现的反应形成了一个包含53种物质和134个反应的动力学模型,该模型通过实验数据以及使用文献动力学模型的模拟进行了验证。我们强调了利用局部蛮力和蒙特卡洛灵敏度分析方法来有效识别重要反应的优势。这两种灵敏度方法都可以进一步提高甲烷热解动力学模型的准确性。这项工作的结果证明了纳米反应器框架在实现计算上可承受的系统反应发现和精确动力学建模方面的强大能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec21/10337770/3f85dbc0fdcb/d3sc01202f-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验