Suppr超能文献

用超薄硫化聚丙烯腈纳米片为锂硫电池供电。

Powering lithium-sulfur batteries by ultrathin sulfurized polyacrylonitrile nanosheets.

作者信息

Wang Ke, Zhao Teng, Zhang Nanxiang, Feng Tao, Li Li, Wu Feng, Chen Renjie

机构信息

Beijing Key Laboratory of Environmental Science and Engineering, School of Material Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.

Institute of Advanced Technology, Beijing Institute of Technology, Jinan 250300, China.

出版信息

Nanoscale. 2021 Oct 14;13(39):16690-16695. doi: 10.1039/d1nr04825b.

Abstract

Sulfurized polyacrylonitrile (SPAN) is a promising cathode material for stable lithium-sulfur (Li-S) batteries due to its shuttle-free redox mechanism. However, the redox kinetics of SPAN needs to be enhanced to improve Li-S batteries. Herein, a salt-templating method is proposed for the fabrication of ultrathin SPAN nanosheets, which can afford a large contact area with the electrolyte and shorten the transport paths of electrons/ions involved in the reaction. Raman analysis confirms the reversible breaking and formation of C-S/S-S bonds in SPAN nanosheets during cycling while SEM reveals the formation of lithium sulfide particles on the surface of SPAN nanosheets at the end of discharge. At a high current density of 2 A g, coin cells based on a SPAN nanosheet cathode can deliver a reversible capacity of 408 mA h g over 100 cycles with a capacity retention rate of 95%. Meanwhile, pouch cells using a SPAN nanosheet cathode exhibit a capacity retention rate close to 100% after 100 cycles at the same current density. These results herald a new approach for powering Li-S batteries by the nanoscale design of the SPAN cathode.

摘要

硫化聚丙烯腈(SPAN)因其无穿梭氧化还原机制,是一种用于稳定锂硫(Li-S)电池的有前景的正极材料。然而,需要增强SPAN的氧化还原动力学以改进锂硫电池。在此,提出一种盐模板法来制备超薄SPAN纳米片,其能提供与电解质的大接触面积并缩短反应中电子/离子的传输路径。拉曼分析证实了循环过程中SPAN纳米片中C-S/S-S键的可逆断裂和形成,而扫描电子显微镜揭示了放电结束时SPAN纳米片表面硫化锂颗粒的形成。在2 A g的高电流密度下,基于SPAN纳米片正极的硬币电池在100次循环中可提供408 mA h g的可逆容量,容量保持率为95%。同时,使用SPAN纳米片正极的软包电池在相同电流密度下100次循环后容量保持率接近100%。这些结果预示了一种通过SPAN正极的纳米级设计为锂硫电池供电的新方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验