Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab 140401, India.
Department of Software, Sejong University, Seoul 05006, Korea.
Sensors (Basel). 2020 Dec 8;20(24):7013. doi: 10.3390/s20247013.
The Android operating system has gained popularity and evolved rapidly since the previous decade. Traditional approaches such as static and dynamic malware identification techniques require a lot of human intervention and resources to design the malware classification model. The real challenge lies with the fact that inspecting all files of the application structure leads to high processing time, more storage, and manual effort. To solve these problems, optimization algorithms and deep learning has been recently tested for mitigating malware attacks. This manuscript proposes umming of neurl achitecture and isualizatin echnology for ndroid alware identification (SARVOTAM). The system converts the malware non-intuitive features into fingerprint images to extract the quality information. A fine-tuned Convolutional Neural Network (CNN) is used to automatically extract rich features from visualized malware thus eliminating the feature engineering and domain expert cost. The experiments were done using the DREBIN dataset. A total of fifteen different combinations of the Android malware image sections were used to identify and classify Android malware. The softmax layer of CNN was substituted with machine learning algorithms like K-Nearest Neighbor (KNN), Support Vector Machine (SVM), and Random Forest (RF) to analyze the grayscale malware images. It observed that CNN-SVM model outperformed original CNN as well as CNN-KNN, and CNN-RF. The classification results showed that our method is able to achieve an accuracy of 92.59% using Android certificates and manifest malware images. This paper reveals the lightweight solution and much precise option for malware identification.
安卓操作系统在过去十年中获得了普及并迅速发展。传统的恶意软件识别技术,如静态和动态恶意软件识别技术,需要大量的人工干预和资源来设计恶意软件分类模型。真正的挑战在于,检查应用程序结构的所有文件会导致处理时间长、存储更多和人工工作量大。为了解决这些问题,最近已经测试了优化算法和深度学习来减轻恶意软件攻击。本文提出了一种用于安卓恶意软件识别的神经网络和可视化技术(SARVOTAM)。该系统将恶意软件的非直观特征转换为指纹图像,以提取质量信息。使用经过微调的卷积神经网络(CNN)自动从可视化的恶意软件中提取丰富的特征,从而消除了特征工程和领域专家成本。实验是使用 DREBIN 数据集进行的。总共使用了安卓恶意软件图像的十五个不同部分组合来识别和分类安卓恶意软件。用机器学习算法(如 K-最近邻(KNN)、支持向量机(SVM)和随机森林(RF))替换 CNN 的 softmax 层,以分析灰度恶意软件图像。结果表明,CNN-SVM 模型优于原始 CNN 以及 CNN-KNN 和 CNN-RF。分类结果表明,我们的方法使用安卓证书和清单恶意软件图像能够达到 92.59%的准确率。本文揭示了一种轻量级的恶意软件识别解决方案和更精确的选择。