Suppr超能文献

使用具有低计算成本卷积层的混合自适应神经模糊推理系统(ANFIS)架构进行安卓恶意软件检测。

Android malware detection using hybrid ANFIS architecture with low computational cost convolutional layers.

作者信息

Atacak İsmail, Kılıç Kazım, Doğru İbrahim Alper

机构信息

IoTLab, Department of Computer Engineering, Faculty of Technology, Gazi University, Ankara, Turkey.

出版信息

PeerJ Comput Sci. 2022 Sep 26;8:e1092. doi: 10.7717/peerj-cs.1092. eCollection 2022.

Abstract

BACKGROUND

Android is the most widely used operating system all over the world. Due to its open nature, the Android operating system has become the target of malicious coders. Ensuring privacy and security is of great importance to Android users.

METHODS

In this study, a hybrid architecture is proposed for the detection of Android malware from the permission information of applications. The proposed architecture combines the feature extraction power of the convolutional neural network (CNN) architecture and the decision making capability of fuzzy logic. Our method extracts features from permission information with a small number of filters and convolutional layers, and also makes the feature size suitable for ANFIS input. In addition, it allows the permission information to affect the classification without being neglected. In the study, malware was obtained from two different sources and two different data sets were created. In the first dataset, Drebin was used for malware applications, and in the second dataset, CICMalDroid 2020 dataset was used for malware applications. For benign applications, the Google Play Store environment was used.

RESULTS

With the proposed method, 92% accuracy in the first data set and 92% -score value in the weighted average was achieved. In the second data set, an accuracy of 94.6% and an -score of 94.6% on the weighted average were achieved. The results obtained in the study show that the proposed method outperforms both classical machine learning algorithms and fuzzy logic-based studies.

摘要

背景

安卓是全球使用最广泛的操作系统。由于其开放性,安卓操作系统已成为恶意编码者的目标。确保隐私和安全对安卓用户至关重要。

方法

在本研究中,提出了一种混合架构,用于从应用程序的权限信息中检测安卓恶意软件。所提出的架构结合了卷积神经网络(CNN)架构的特征提取能力和模糊逻辑的决策能力。我们的方法使用少量滤波器和卷积层从权限信息中提取特征,还使特征大小适合自适应神经模糊推理系统(ANFIS)输入。此外,它允许权限信息在不被忽视的情况下影响分类。在该研究中,恶意软件来自两个不同来源,并创建了两个不同的数据集。在第一个数据集中,Drebin用于恶意软件应用程序,在第二个数据集中,CICMalDroid 2020数据集用于恶意软件应用程序。对于良性应用程序,使用了谷歌应用商店环境。

结果

使用所提出的方法,在第一个数据集中达到了92%的准确率,加权平均值的得分值为92%。在第二个数据集中,加权平均值的准确率为94.6%,得分值为94.6%。该研究获得的结果表明,所提出的方法优于经典机器学习算法和基于模糊逻辑的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验