Suppr超能文献

整合生理学与环境动态,将环境DNA(eDNA)作为监测淡水大型生物丰度的一种手段加以应用。

Integrating physiology and environmental dynamics to operationalize environmental DNA (eDNA) as a means to monitor freshwater macro-organism abundance.

作者信息

Yates Matthew C, Cristescu Melania E, Derry Alison M

机构信息

Université du Québec à Montréal, Montréal, Québec, Canada.

McGill University, Montreal, Quebec, Canada.

出版信息

Mol Ecol. 2021 Dec;30(24):6531-6550. doi: 10.1111/mec.16202. Epub 2021 Oct 17.

Abstract

Research has demonstrated consistent positive correlations between organism abundance and absolute environmental DNA (eDNA) concentrations. Robust correlations in laboratory experiments indicate strong functional links, suggesting the potential for eDNA to monitor organism abundance in nature. However, correlations between absolute eDNA concentrations and organism abundance in nature tend to be weaker because myriad biotic and abiotic factors influence steady-state eDNA concentrations, decoupling its direct functional link with abundance. Additional technical challenges can also weaken correlations between relative organism abundance and relative eDNA data derived from metabarcoding. Future research must account for these factors to improve the inference of organism abundance from eDNA, including integrating the effects of organism physiology on eDNA production, eDNA dynamics in lentic/lotic systems, and key environmental parameters that impact estimated steady-state concentrations. Additionally, it is critical to manage expectations surrounding the accuracy and precision that eDNA can provide - eDNA, for example, cannot provide abundance estimates comparable to intensively managed freshwater fisheries that enumerate every individual fish. Recent developments, however, are encouraging. Current methods could provide meaningful information regarding qualitative conservation thresholds and emergent research has demonstrated that eDNA concentrations in natural ecosystems can provide rough quantitative estimates of abundance, particularly when models integrate physiology and/or eDNA dynamics. Operationalizing eDNA to infer abundance will probably require more than simple correlations with organism biomass/density. Nevertheless, the future is promising - models that integrate eDNA dynamics in nature could represent an effective means to infer abundance, particularly when traditional methods are considered too "costly" or difficult to obtain.

摘要

研究表明,生物丰度与绝对环境DNA(eDNA)浓度之间存在持续的正相关关系。实验室实验中的稳健相关性表明存在强大的功能联系,这意味着eDNA有潜力用于监测自然界中的生物丰度。然而,在自然界中,绝对eDNA浓度与生物丰度之间的相关性往往较弱,因为众多生物和非生物因素会影响稳态eDNA浓度,从而使其与丰度的直接功能联系脱钩。其他技术挑战也会削弱相对生物丰度与源自代谢条形码的相对eDNA数据之间的相关性。未来的研究必须考虑这些因素,以改善从eDNA推断生物丰度的能力,包括整合生物生理学对eDNA产生的影响、eDNA在静水/流水系统中的动态变化,以及影响估计稳态浓度的关键环境参数。此外,管理对eDNA所能提供的准确性和精确性的期望至关重要——例如,eDNA无法提供与对每条鱼都进行计数的集约化管理淡水渔业相当的丰度估计。不过,最近的进展令人鼓舞。目前的方法可以提供有关定性保护阈值的有意义信息,并且新出现的研究表明,自然生态系统中的eDNA浓度可以提供丰度的大致定量估计,特别是当模型整合生理学和/或eDNA动态变化时。将eDNA用于推断丰度可能需要的不仅仅是与生物量/密度的简单相关性。尽管如此,未来是有希望的——整合自然界中eDNA动态变化的模型可能是推断丰度的有效手段,特别是当传统方法被认为过于“昂贵”或难以实施时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验