School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, 310018, People's Republic of China.
Collaborative Innovation Center of Statistical Data Engineering, Technology & Application, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, 310018, People's Republic of China.
Int J Biostat. 2021 Sep 29;18(2):473-485. doi: 10.1515/ijb-2021-0012. eCollection 2022 Nov 1.
The accelerated failure time mixture cure (AFTMC) model is widely used for survival data when a portion of patients can be cured. In this paper, a Bayesian semiparametric method is proposed to obtain the estimation of parameters and density distribution for both the cure probability and the survival distribution of the uncured patients in the AFTMC model. Specifically, the baseline error distribution of the uncured patients is nonparametrically modeled by a mixture of Dirichlet process. Based on the stick-breaking formulation of the Dirichlet process, the techniques of retrospective and slice sampling, an efficient and easy-to-implement Gibbs sampler is developed for the posterior calculation. The proposed approach can be easily implemented in commonly used statistical softwares, and its performance is comparable to fully parametric method via comprehensive simulation studies. Besides, the proposed approach is adopted to the analysis of a colorectal cancer clinical trial data.
当一部分患者可以被治愈时,加速失效时间混合治愈(AFTMC)模型被广泛应用于生存数据分析。本文提出了一种贝叶斯半参数方法,用于获得 AFTMC 模型中治愈概率和未治愈患者生存分布的参数和密度分布的估计。具体来说,未治愈患者的基线误差分布通过混合 Dirichlet 过程进行非参数建模。基于 Dirichlet 过程的断棍式表述,采用回溯和切片抽样技术,为后验计算开发了一个高效且易于实现的 Gibbs 抽样器。该方法可以很容易地在常用的统计软件中实现,并且通过综合模拟研究,其性能可与完全参数方法相媲美。此外,该方法还应用于结直肠癌临床试验数据的分析。