ORSTAT, KU Leuven, Naamsestraat 69, box 3500, 3000, Leuven, Belgium.
Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
Lifetime Data Anal. 2024 Apr;30(2):472-500. doi: 10.1007/s10985-024-09619-w. Epub 2024 Mar 4.
In clinical studies, one often encounters time-to-event data that are subject to right censoring and for which a fraction of the patients under study never experience the event of interest. Such data can be modeled using cure models in survival analysis. In the presence of cure fraction, the mixture cure model is popular, since it allows to model probability to be cured (called the incidence) and the survival function of the uncured individuals (called the latency). In this paper, we develop a variable selection procedure for the incidence and latency parts of a mixture cure model, consisting of a logistic model for the incidence and a semiparametric accelerated failure time model for the latency. We use a penalized likelihood approach, based on adaptive LASSO penalties for each part of the model, and we consider two algorithms for optimizing the criterion function. Extensive simulations are carried out to assess the accuracy of the proposed selection procedure. Finally, we employ the proposed method to a real dataset regarding heart failure patients with left ventricular systolic dysfunction.
在临床研究中,人们经常会遇到右删失的生存时间数据,对于这类数据,研究中的一部分患者从未经历过感兴趣的事件。对于这种数据,可以使用生存分析中的治愈模型进行建模。在存在治愈比例的情况下,混合治愈模型很受欢迎,因为它可以同时建模治愈的概率(称为发病率)和未治愈个体的生存函数(称为潜伏期)。在本文中,我们为混合治愈模型的发病率和潜伏期部分开发了一种变量选择程序,该程序由发病率的逻辑模型和潜伏期的半参数加速失效时间模型组成。我们使用基于惩罚似然的方法,为模型的每个部分使用自适应 LASSO 惩罚,并考虑了两种优化准则函数的算法。我们进行了广泛的模拟,以评估所提出的选择程序的准确性。最后,我们将所提出的方法应用于一组关于左心室收缩功能障碍的心力衰竭患者的真实数据集。