Suppr超能文献

工程化酿酒酵母的 Crabtree/Warburg 样需氧木糖发酵。

Crabtree/Warburg-like aerobic xylose fermentation by engineered Saccharomyces cerevisiae.

机构信息

DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI, USA; Wisconsin Energy Institute, J. F. Crow Institute for the Study of Evolution, University of Wisconsin-Madison, Madison, WI, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA; Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, USA.

DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, WI, USA.

出版信息

Metab Eng. 2021 Nov;68:119-130. doi: 10.1016/j.ymben.2021.09.008. Epub 2021 Sep 27.

Abstract

Bottlenecks in the efficient conversion of xylose into cost-effective biofuels have limited the widespread use of plant lignocellulose as a renewable feedstock. The yeast Saccharomyces cerevisiae ferments glucose into ethanol with such high metabolic flux that it ferments high concentrations of glucose aerobically, a trait called the Crabtree/Warburg Effect. In contrast to glucose, most engineered S. cerevisiae strains do not ferment xylose at economically viable rates and yields, and they require respiration to achieve sufficient xylose metabolic flux and energy return for growth aerobically. Here, we evolved respiration-deficient S. cerevisiae strains that can grow on and ferment xylose to ethanol aerobically, a trait analogous to the Crabtree/Warburg Effect for glucose. Through genome sequence comparisons and directed engineering, we determined that duplications of genes encoding engineered xylose metabolism enzymes, as well as TKL1, a gene encoding a transketolase in the pentose phosphate pathway, were the causative genetic changes for the evolved phenotype. Reengineered duplications of these enzymes, in combination with deletion mutations in HOG1, ISU1, GRE3, and IRA2, increased the rates of aerobic and anaerobic xylose fermentation. Importantly, we found that these genetic modifications function in another genetic background and increase the rate and yield of xylose-to-ethanol conversion in industrially relevant switchgrass hydrolysate, indicating that these specific genetic modifications may enable the sustainable production of industrial biofuels from yeast. We propose a model for how key regulatory mutations prime yeast for aerobic xylose fermentation by lowering the threshold for overflow metabolism, allowing mutations to increase xylose flux and to redirect it into fermentation products.

摘要

木糖高效转化为具有成本效益的生物燃料的瓶颈限制了植物木质纤维素作为可再生原料的广泛应用。酵母酿酒酵母(Saccharomyces cerevisiae)将葡萄糖发酵成乙醇的代谢通量非常高,以至于它能够在有氧条件下发酵高浓度的葡萄糖,这种特性被称为 Crabtree/Warburg 效应。与葡萄糖不同,大多数工程酿酒酵母菌株不能以经济上可行的速率和产率发酵木糖,并且它们需要呼吸作用来实现足够的木糖代谢通量和有氧生长的能量回收。在这里,我们进化出了呼吸缺陷型酿酒酵母菌株,这些菌株可以在有氧条件下利用木糖并将其发酵成乙醇,这种特性类似于葡萄糖的 Crabtree/Warburg 效应。通过基因组序列比较和定向工程,我们确定了编码工程木糖代谢酶的基因以及编码戊糖磷酸途径中转酮酶的 TKL1 基因的重复是进化表型的因果遗传变化。这些酶的工程化重复的重新设计,与 HOG1、ISU1、GRE3 和 IRA2 的缺失突变相结合,提高了有氧和厌氧木糖发酵的速率。重要的是,我们发现这些遗传修饰在另一个遗传背景中起作用,并提高了工业相关柳枝稷水解物中木糖到乙醇转化的速率和产率,这表明这些特定的遗传修饰可能使酵母能够可持续地生产工业生物燃料。我们提出了一个模型,说明关键调节突变如何通过降低溢出代谢的阈值来为酵母的有氧木糖发酵做好准备,从而允许突变增加木糖通量并将其重新定向到发酵产物中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验