Suppr超能文献

在铅吸附的单层二硒化钨中同时存在非传统的 Rashba 型和塞曼型自旋分裂。

Coexisting unconventional Rashba- and Zeeman-type spin splitting in Pb-adsorbed monolayer WSe.

作者信息

Mao Xiujuan, Li Jia, Liu Ze, Wang Jiaxi, He Fuli, Wang Yafan

机构信息

School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, People's Republic of China.

School of Science, Hebei University of Technology, Tianjin 300401, People's Republic of China.

出版信息

J Phys Condens Matter. 2021 Nov 1;34(3). doi: 10.1088/1361-648X/ac2bc5.

Abstract

Based on first-principles calculations, the unconventional Rashba- and Zeeman-type spin splitting can simultaneously coexist in the Pb-adsorbed monolayer WSesystem. The first two adsorption configurationsandshow remarkable features under the spin-orbit coupling, in which two split energy branches show same spin states at the left or right side of Γ, and the spin polarization is reversed for both Rashba band branches. For the second adsorption configuration, an energy gap was observed near the unconventional spin polarization caused by the repelled Rashba bands for avoid crossing, and this gap can produce non-dissipative spin current by applying the voltage. The results forconfiguration with spin reversal show that the repel band gap and Rashba parameter can be effectively regulated within the biaxial strain range of -8% to 6%. By changing the adsorption distancebetween Pb and the neighboring Se atom layer, the reducedcaused the transfer from Rashba-type to Zeeman-type spin splitting. This predicted adsorption system would be promising for spintronic applications.

摘要

基于第一性原理计算,非常规的 Rashba 型和塞曼型自旋分裂可以在 Pb 吸附的单层 WS₂ 系统中同时共存。前两种吸附构型在自旋轨道耦合下表现出显著特征,其中两个分裂的能量分支在 Γ 点的左侧或右侧显示相同的自旋状态,并且两个 Rashba 能带分支的自旋极化方向相反。对于第二种吸附构型,在由排斥的 Rashba 能带避免交叉引起的非常规自旋极化附近观察到一个能隙,通过施加电压,这个能隙可以产生无耗散的自旋电流。自旋反转构型的结果表明,在 -8% 至 6% 的双轴应变范围内,可以有效地调节排斥带隙和 Rashba 参数。通过改变 Pb 与相邻 Se 原子层之间的吸附距离,距离减小导致从 Rashba 型自旋分裂转变为塞曼型自旋分裂。这种预测的吸附系统在自旋电子学应用方面具有潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验