Xu Yang, Rather Adil M, Yao Yuxing, Fang Jen-Chun, Mamtani Rajdeep S, Bennett Robert K A, Atta Richard G, Adera Solomon, Tkalec Uroš, Wang Xiaoguang
William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA.
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
Sci Adv. 2021 Oct;7(40):eabi7607. doi: 10.1126/sciadv.abi7607. Epub 2021 Oct 1.
The ability to control both the mobility and chemical compositions of microliter-scale aqueous droplets is an essential prerequisite for next-generation open surface microfluidics. Independently manipulating the chemical compositions of aqueous droplets without altering their mobility, however, remains challenging. In this work, we address this challenge by designing a class of open surface microfluidic platforms based on thermotropic liquid crystals (LCs). We demonstrate, both experimentally and theoretically, that the unique positional and orientational order of LC molecules intrinsically decouple cargo release functionality from droplet mobility via selective phase transitions. Furthermore, we build sodium sulfide–loaded LC surfaces that can efficiently precipitate heavy metal ions in sliding water droplets to final concentration less than 1 part per million for more than 500 cycles without causing droplets to become pinned. Overall, our results reveal that LC surfaces offer unique possibilities for the design of novel open surface fluidic systems with orthogonal functionalities.
能够控制微升规模水滴的流动性和化学成分是下一代开放式表面微流体技术的基本前提。然而,在不改变水滴流动性的情况下独立操纵其化学成分仍然具有挑战性。在这项工作中,我们通过设计一类基于热致液晶(LC)的开放式表面微流体平台来应对这一挑战。我们通过实验和理论证明,LC分子独特的位置和取向顺序通过选择性相变将货物释放功能与液滴流动性内在地解耦。此外,我们构建了负载硫化钠的LC表面,该表面可以有效地使滑动水滴中的重金属离子沉淀,最终浓度低于百万分之一,且能循环500多次而不会导致水滴固定。总体而言,我们的结果表明,LC表面为设计具有正交功能的新型开放式表面流体系统提供了独特的可能性。