Suppr超能文献

在 C. elegans 肠道细胞的上皮极化过程中细胞器的不对称定位。

Asymmetric organelle positioning during epithelial polarization of C. elegans intestinal cells.

机构信息

Department of Biology, Lewis & Clark College, Portland, OR, USA.

Department of Biology, Lewis & Clark College, Portland, OR, USA.

出版信息

Dev Biol. 2022 Jan;481:75-94. doi: 10.1016/j.ydbio.2021.09.007. Epub 2021 Sep 29.

Abstract

While the epithelial cell cortex displays profound asymmetries in protein distribution and morphology along the apico-basal axis, the extent to which the cytoplasm is similarly polarized within epithelial cells remains relatively unexplored. We show that cytoplasmic organelles within C. elegans embryonic intestinal cells develop extensive apico-basal polarity at the time they establish cortical asymmetry. Nuclei and conventional endosomes, including early endosomes, late endosomes, and lysosomes, become polarized apically. Lysosome-related gut granules, yolk platelets, and lipid droplets become basally enriched. Removal of par-3 activity does not disrupt organelle positioning, indicating that cytoplasmic apico-basal asymmetry is independent of the PAR polarity pathway. Blocking the apical migration of nuclei leads to the apical positioning of gut granules and yolk platelets, whereas the asymmetric localization of conventional endosomes and lipid droplets is unaltered. This suggests that nuclear positioning organizes some, but not all, cytoplasmic asymmetries in this cell type. We show that gut granules become apically enriched when WHT-2 and WHT-7 function is disrupted, identifying a novel role for ABCG transporters in gut granule positioning during epithelial polarization. Analysis of WHT-2 and WHT-7 ATPase mutants is consistent with a WHT-2/WHT-7 heterodimer acting as a transporter in gut granule positioning. In wht-2(-) mutants, the polarized distribution of other organelles is not altered and gut granules do not take on characteristics of conventional endosomes that could have explained their apical mispositioning. During epithelial polarization wht-2(-) gut granules exhibit a loss of the Rab32/38 family member GLO-1 and ectopic expression of GLO-1 is sufficient to rescue the basal positioning of wht-2(-) and wht-7(-) gut granules. Furthermore, depletion of GLO-1 causes the mislocalization of the endolysosomal RAB-7 to gut granules and RAB-7 drives the apical mispositioning of gut granules when GLO-1, WHT-2, or WHT-7 function is disrupted. We suggest that ABC transporters residing on gut granules can regulate Rab dynamics to control organelle positioning during epithelial polarization.

摘要

虽然上皮细胞皮层在沿顶-基底轴的蛋白质分布和形态上表现出明显的不对称,但细胞质在多大程度上在上皮细胞内同样极化仍然相对未知。我们表明,在 C. elegans 胚胎肠细胞建立皮质不对称性的同时,细胞质细胞器在顶-基底方向上表现出广泛的极性。核和常规内体,包括早期内体、晚期内体和溶酶体,向顶端极化。溶酶体相关的肠道颗粒、卵黄小板和脂滴在基底处富集。去除 par-3 活性不会破坏细胞器的定位,表明细胞质的顶-基底不对称性独立于 PAR 极性途径。阻止核的顶端迁移导致肠道颗粒和卵黄小板的顶端定位,而常规内体和脂滴的不对称定位则不变。这表明核的定位组织了这种细胞类型中的一些,但不是全部细胞质不对称。我们表明,当 WHT-2 和 WHT-7 功能被破坏时,肠道颗粒会变得丰富,从而确定 ABCG 转运蛋白在肠颗粒定位上皮极化过程中的新作用。分析 WHT-2 和 WHT-7 ATP 酶突变体与 WHT-2/WHT-7 异二聚体作为肠颗粒定位转运蛋白一致。在 wht-2(-) 突变体中,其他细胞器的极化分布没有改变,肠道颗粒也没有表现出可以解释其顶端错位的常规内体的特征。在上皮极化过程中,wht-2(-)肠道颗粒表现出 Rab32/38 家族成员 GLO-1 的丢失,并且 GLO-1 的异位表达足以挽救 wht-2(-)和 wht-7(-)肠道颗粒的基底定位。此外,耗尽 GLO-1 会导致内溶酶体 RAB-7 向肠道颗粒的错误定位,并且当 GLO-1、WHT-2 或 WHT-7 功能被破坏时,RAB-7 会驱动肠道颗粒的顶端错位。我们认为,位于肠道颗粒上的 ABC 转运蛋白可以调节 Rab 动力学,以控制上皮极化过程中的细胞器定位。

相似文献

1
Asymmetric organelle positioning during epithelial polarization of C. elegans intestinal cells.
Dev Biol. 2022 Jan;481:75-94. doi: 10.1016/j.ydbio.2021.09.007. Epub 2021 Sep 29.
2
An ABCG Transporter Functions in Rab Localization and Lysosome-Related Organelle Biogenesis in .
Genetics. 2020 Feb;214(2):419-445. doi: 10.1534/genetics.119.302900. Epub 2019 Dec 17.
3
Function and regulation of the Caenorhabditis elegans Rab32 family member GLO-1 in lysosome-related organelle biogenesis.
PLoS Genet. 2018 Nov 12;14(11):e1007772. doi: 10.1371/journal.pgen.1007772. eCollection 2018 Nov.
4
Caenorhabditis elegans HOPS and CCZ-1 mediate trafficking to lysosome-related organelles independently of RAB-7 and SAND-1.
Mol Biol Cell. 2014 Apr;25(7):1073-96. doi: 10.1091/mbc.E13-09-0521. Epub 2014 Feb 5.
5
glo-3, a novel Caenorhabditis elegans gene, is required for lysosome-related organelle biogenesis.
Genetics. 2008 Oct;180(2):857-71. doi: 10.1534/genetics.108.093534. Epub 2008 Sep 9.
7
A Caenorhabditis elegans model of orotic aciduria reveals enlarged lysosome-related organelles in embryos lacking umps-1 function.
FEBS J. 2010 Mar;277(6):1420-39. doi: 10.1111/j.1742-4658.2010.07573.x. Epub 2010 Feb 10.
9
Role of the Caenorhabditis elegans multidrug resistance gene, mrp-4, in gut granule differentiation.
Genetics. 2007 Nov;177(3):1569-82. doi: 10.1534/genetics.107.080689. Epub 2007 Oct 18.

引用本文的文献

1
Single-tissue proteomics in reveals proteins resident in intestinal lysosome-related organelles.
Proc Natl Acad Sci U S A. 2024 Jun 18;121(25):e2322588121. doi: 10.1073/pnas.2322588121. Epub 2024 Jun 11.
2
Organelle morphology and positioning orchestrate physiological and disease-associated processes.
Curr Opin Cell Biol. 2024 Feb;86:102293. doi: 10.1016/j.ceb.2023.102293. Epub 2023 Dec 13.
4
Delineating the mechanisms and design principles of embryogenesis using high-resolution imaging data and computational modeling.
Comput Struct Biotechnol J. 2022 Aug 19;20:5500-5515. doi: 10.1016/j.csbj.2022.08.024. eCollection 2022.

本文引用的文献

1
Lipid-mediated motor-adaptor sequestration impairs axonal lysosome delivery leading to autophagic stress and dystrophy in Niemann-Pick type C.
Dev Cell. 2021 May 17;56(10):1452-1468.e8. doi: 10.1016/j.devcel.2021.03.032. Epub 2021 Apr 19.
3
LINC complex regulation of genome organization and function.
Curr Opin Genet Dev. 2021 Apr;67:130-141. doi: 10.1016/j.gde.2020.12.007. Epub 2021 Jan 30.
4
ABCG: a new fold of ABC exporters and a whole new bag of riddles!
Adv Protein Chem Struct Biol. 2021;123:163-191. doi: 10.1016/bs.apcsb.2020.09.006. Epub 2020 Dec 4.
5
Lysosomal Biology and Function: Modern View of Cellular Debris Bin.
Cells. 2020 May 4;9(5):1131. doi: 10.3390/cells9051131.
6
3D structure of the transporter ABCG2-What's new?
Br J Pharmacol. 2020 Apr;177(7):1485-1496. doi: 10.1111/bph.14991. Epub 2020 Feb 11.
7
Lipid droplet motility and organelle contacts.
Contact (Thousand Oaks). 2019 Jan-Dec;2. doi: 10.1177/2515256419895688. Epub 2019 Dec 16.
8
An ABCG Transporter Functions in Rab Localization and Lysosome-Related Organelle Biogenesis in .
Genetics. 2020 Feb;214(2):419-445. doi: 10.1534/genetics.119.302900. Epub 2019 Dec 17.
9
Intracellular organization in cell polarity - placing organelles into the polarity loop.
J Cell Sci. 2019 Dec 13;132(24):jcs230995. doi: 10.1242/jcs.230995.
10
Lysosomes as dynamic regulators of cell and organismal homeostasis.
Nat Rev Mol Cell Biol. 2020 Feb;21(2):101-118. doi: 10.1038/s41580-019-0185-4. Epub 2019 Nov 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验