Department of Biology, Lewis & Clark College, Portland, OR, USA.
Department of Biology, Lewis & Clark College, Portland, OR, USA.
Dev Biol. 2022 Jan;481:75-94. doi: 10.1016/j.ydbio.2021.09.007. Epub 2021 Sep 29.
While the epithelial cell cortex displays profound asymmetries in protein distribution and morphology along the apico-basal axis, the extent to which the cytoplasm is similarly polarized within epithelial cells remains relatively unexplored. We show that cytoplasmic organelles within C. elegans embryonic intestinal cells develop extensive apico-basal polarity at the time they establish cortical asymmetry. Nuclei and conventional endosomes, including early endosomes, late endosomes, and lysosomes, become polarized apically. Lysosome-related gut granules, yolk platelets, and lipid droplets become basally enriched. Removal of par-3 activity does not disrupt organelle positioning, indicating that cytoplasmic apico-basal asymmetry is independent of the PAR polarity pathway. Blocking the apical migration of nuclei leads to the apical positioning of gut granules and yolk platelets, whereas the asymmetric localization of conventional endosomes and lipid droplets is unaltered. This suggests that nuclear positioning organizes some, but not all, cytoplasmic asymmetries in this cell type. We show that gut granules become apically enriched when WHT-2 and WHT-7 function is disrupted, identifying a novel role for ABCG transporters in gut granule positioning during epithelial polarization. Analysis of WHT-2 and WHT-7 ATPase mutants is consistent with a WHT-2/WHT-7 heterodimer acting as a transporter in gut granule positioning. In wht-2(-) mutants, the polarized distribution of other organelles is not altered and gut granules do not take on characteristics of conventional endosomes that could have explained their apical mispositioning. During epithelial polarization wht-2(-) gut granules exhibit a loss of the Rab32/38 family member GLO-1 and ectopic expression of GLO-1 is sufficient to rescue the basal positioning of wht-2(-) and wht-7(-) gut granules. Furthermore, depletion of GLO-1 causes the mislocalization of the endolysosomal RAB-7 to gut granules and RAB-7 drives the apical mispositioning of gut granules when GLO-1, WHT-2, or WHT-7 function is disrupted. We suggest that ABC transporters residing on gut granules can regulate Rab dynamics to control organelle positioning during epithelial polarization.
虽然上皮细胞皮层在沿顶-基底轴的蛋白质分布和形态上表现出明显的不对称,但细胞质在多大程度上在上皮细胞内同样极化仍然相对未知。我们表明,在 C. elegans 胚胎肠细胞建立皮质不对称性的同时,细胞质细胞器在顶-基底方向上表现出广泛的极性。核和常规内体,包括早期内体、晚期内体和溶酶体,向顶端极化。溶酶体相关的肠道颗粒、卵黄小板和脂滴在基底处富集。去除 par-3 活性不会破坏细胞器的定位,表明细胞质的顶-基底不对称性独立于 PAR 极性途径。阻止核的顶端迁移导致肠道颗粒和卵黄小板的顶端定位,而常规内体和脂滴的不对称定位则不变。这表明核的定位组织了这种细胞类型中的一些,但不是全部细胞质不对称。我们表明,当 WHT-2 和 WHT-7 功能被破坏时,肠道颗粒会变得丰富,从而确定 ABCG 转运蛋白在肠颗粒定位上皮极化过程中的新作用。分析 WHT-2 和 WHT-7 ATP 酶突变体与 WHT-2/WHT-7 异二聚体作为肠颗粒定位转运蛋白一致。在 wht-2(-) 突变体中,其他细胞器的极化分布没有改变,肠道颗粒也没有表现出可以解释其顶端错位的常规内体的特征。在上皮极化过程中,wht-2(-)肠道颗粒表现出 Rab32/38 家族成员 GLO-1 的丢失,并且 GLO-1 的异位表达足以挽救 wht-2(-)和 wht-7(-)肠道颗粒的基底定位。此外,耗尽 GLO-1 会导致内溶酶体 RAB-7 向肠道颗粒的错误定位,并且当 GLO-1、WHT-2 或 WHT-7 功能被破坏时,RAB-7 会驱动肠道颗粒的顶端错位。我们认为,位于肠道颗粒上的 ABC 转运蛋白可以调节 Rab 动力学,以控制上皮极化过程中的细胞器定位。