Suppr超能文献

两段式动态代谢去调控提高了工程大肠杆菌中工艺的鲁棒性和可扩展性。

Two-stage dynamic deregulation of metabolism improves process robustness & scalability in engineered E. coli.

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC, USA; DMC Biotechnologies, Inc., Durham, NC, USA.

Department of Chemistry, Duke University, Durham, NC, USA.

出版信息

Metab Eng. 2021 Nov;68:106-118. doi: 10.1016/j.ymben.2021.09.009. Epub 2021 Sep 30.

Abstract

We report that two-stage dynamic control improves bioprocess robustness as a result of the dynamic deregulation of central metabolism. Dynamic control is implemented during stationary phase using combinations of CRISPR interference and controlled proteolysis to reduce levels of central metabolic enzymes. Reducing the levels of key enzymes alters metabolite pools resulting in deregulation of the metabolic network. Deregulated networks are less sensitive to environmental conditions improving process robustness. Process robustness in turn leads to predictable scalability, minimizing the need for traditional process optimization. We validate process robustness and scalability of strains and bioprocesses synthesizing the important industrial chemicals alanine, citramalate and xylitol. Predictive high throughput approaches that translate to larger scales are critical for metabolic engineering programs to truly take advantage of the rapidly increasing throughput and decreasing costs of synthetic biology.

摘要

我们报告称,两阶段动态控制通过动态去调控中心代谢来提高生物工艺的鲁棒性。在静止期,通过 CRISPR 干扰和受控蛋白水解的组合来降低中心代谢酶的水平,从而实现动态控制。降低关键酶的水平会改变代谢物池,从而导致代谢网络的去调控。去调控的网络对环境条件的变化不那么敏感,从而提高了工艺的鲁棒性。反过来,工艺的鲁棒性又导致可预测的可扩展性,从而最大限度地减少了对传统工艺优化的需求。我们验证了合成重要工业化学品丙氨酸、柠檬酸和木糖醇的菌株和生物工艺的鲁棒性和可扩展性。可转化为更大规模的预测性高通量方法对于代谢工程计划来说至关重要,因为这可以真正利用合成生物学中快速增加的通量和降低的成本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验