Suppr超能文献

高性能镧基金属有机骨架,通过配体调变微结构去除水中的氟化物。

High-performance lanthanum-based metal-organic framework with ligand tuning of the microstructures for removal of fluoride from water.

机构信息

Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China.

Key Laboratory of Medicinal Chemistry for Natural Resource (Yunnan University), Ministry Education, Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China.

出版信息

J Colloid Interface Sci. 2022 Feb;607(Pt 2):1762-1775. doi: 10.1016/j.jcis.2021.09.108. Epub 2021 Sep 22.

Abstract

Excess fluoride in water poses a threat to ecology and human health, which has attracted global attention. In this study, a series of lanthanum-based metal-organic frameworks (La-MOFs) were synthesized by varying the organic ligands (i.e., terephthalic acid (BDC), trimesic acid (BTC), biphenyl-4,4-dicarboxylic acid (BPDC), 2,5-dihydroxyterephthalic acid (BHTA), and 1,2,4,5-benzenetetracarboxylic acid (PMA)) to control the microscopic structure of the MOFs and subsequently apply them for the removal of fluoride in water. The maximum capture capacities of La-BTC, La-BPDC, La-BHTA, La-PMA, and La-BDC at 298 K are 105.2, 125.9, 145.5, 158.9, and 171.7 mg g, respectively. The adsorption capacity is greater than most reported adsorbents. The adsorption isotherms of La-MOFs for fluoride are well fit to the Langmuir isotherm model. In addition, the adsorption kinetics of La-BTC, La-BPDC, La-BHTA, La-PMA, and La-BDC follows the pseudo-second-order kinetic model, and the kinetic rate-limiting step of adsorption is chemical adsorption. Thermodynamics revealed that temperature is favorable for the adsorption of fluoride. Meanwhile, La-BTC, La-BPDC, La-BHTA, La-PMA, and La-BDC are suitable for the removal of fluoride in a relatively wide pH range (4.0-9.0). Simultaneously, from X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis, electrostatic attraction and ligand exchange are identified as the main action mechanisms for the adsorption of fluoride of La-MOFs. The prepared La-MOFs are used as efficient adsorbents for removal of fluoride in actual water, indicating that they have great potential in removing fluoride in real and complex environmental water. This work provides a new strategy for designing adsorbents with adjustable microstructure and expected function to effectively recover fluorosis in water.

摘要

水中过量的氟对生态和人类健康构成威胁,这引起了全球关注。在本研究中,通过改变有机配体(即对苯二甲酸(BDC)、均苯三甲酸(BTC)、联苯-4,4-二甲酸(BPDC)、2,5-二羟基对苯二甲酸(BHTA)和 1,2,4,5-苯四羧酸(PMA))来合成一系列镧基金属有机骨架(La-MOFs),以控制 MOFs 的微观结构,随后将其应用于水中氟化物的去除。在 298 K 时,La-BTC、La-BPDC、La-BHTA、La-PMA 和 La-BDC 的最大捕获容量分别为 105.2、125.9、145.5、158.9 和 171.7 mg g-1。吸附容量大于大多数报道的吸附剂。La-MOFs 对氟化物的吸附等温线很好地符合朗缪尔等温线模型。此外,La-BTC、La-BPDC、La-BHTA、La-PMA 和 La-BDC 的吸附动力学遵循准二级动力学模型,吸附的动力学限速步骤是化学吸附。热力学表明温度有利于氟化物的吸附。同时,La-BTC、La-BPDC、La-BHTA、La-PMA 和 La-BDC 适用于在相对较宽的 pH 范围(4.0-9.0)内去除氟化物。同时,通过 X 射线光电子能谱(XPS)和傅里叶变换红外光谱(FTIR)分析,静电吸引和配体交换被确定为 La-MOFs 吸附氟化物的主要作用机制。制备的 La-MOFs 用作实际水中氟化物去除的高效吸附剂,表明它们在去除实际和复杂环境水中的氟化物方面具有巨大潜力。这项工作为设计具有可调节微观结构和预期功能的吸附剂提供了一种新策略,以有效回收水中的氟化物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验