Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain.
Departamento de Botánica y Fisiología Vegetal, Universidad de Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain.
Aquat Toxicol. 2021 Nov;240:105973. doi: 10.1016/j.aquatox.2021.105973. Epub 2021 Sep 21.
One of the most important anthropogenic impacts on freshwater aquatic ecosystems close to intensive agriculture areas is the cumulative increase in herbicide concentrations. The threat is especially relevant for phytoplankton organisms because they have the same physiological targets as the plants for which herbicides have been designed. This led us to explore the evolutionary response of three phytoplanktonic species to increasing concentrations of two herbicides and its consequences in terms of growth and photosynthesis performance. Specifically, we used an experimental ratchet protocol to investigate the differential evolution and the limit of resistance of a cyanobacterium (Microcystis aeruginosa) and two chlorophyceans (Chlamydomonas reinhardtii and Dictyosphaerium chlorelloides) to two herbicides in worldwide use: glyphosate and diuron. Initially, the growth rate of M. aeruginosa and D. chlorelloides was completely inhibited when they were exposed to a dose of 0.23 ppm diuron or 40 ppm glyphosate, whereas a higher concentration of both herbicides (0.46 ppm diuron or 90 ppm glyphosate) was necessary to abolish C. reinhardtii growth. However, after running a ratchet protocol, the resistance of the three species to both herbicides increased by an adaptation process. M. aeruginosa and D. chlorelloides were able to grow at 1.84 ppm diuron and 80 ppm glyphosate and C. reinhardtii proliferated at twice these concentrations. Herbicide-resistant strains showed lower growth rates than their wild-type counterparts in the absence of herbicides, as well as changes on morphology and differences on photosynthetic pigment content. Besides, herbicide-resistant cells generally showed a lower photosynthetic performance than wild-type strains in the three species. These results indicate that the introduction of both herbicides in freshwater ecosystems could produce a diminution of primary production due to the selection of herbicide-resistant mutants, that would exhibit lower photosynthetic performance than wild-type populations.
农业密集区附近的淡水水生生态系统受到的最重要的人为影响之一是除草剂浓度的累积增加。这种威胁对浮游植物尤其相关,因为它们与设计除草剂的植物具有相同的生理靶标。这促使我们探索三种浮游植物物种对两种除草剂浓度增加的进化反应及其对生长和光合作用性能的影响。具体来说,我们使用实验棘轮协议来研究一种蓝藻(铜绿微囊藻)和两种绿藻(莱茵衣藻和胶球藻)对两种在全球范围内使用的除草剂:草甘膦和敌草隆的差异进化和抗性极限。最初,当 M. aeruginosa 和 D. chlorelloides 暴露于 0.23 ppm 敌草隆或 40 ppm 草甘膦的剂量时,它们的生长速率完全受到抑制,而两种除草剂的较高浓度(0.46 ppm 敌草隆或 90 ppm 草甘膦)则需要消灭 C. reinhardtii 的生长。然而,在运行棘轮协议后,三种物种对两种除草剂的抗性都通过适应过程增加。M. aeruginosa 和 D. chlorelloides 能够在 1.84 ppm 敌草隆和 80 ppm 草甘膦的浓度下生长,而 C. reinhardtii 在这两种浓度的两倍下增殖。与野生型相比,除草剂抗性菌株在没有除草剂的情况下生长速度较慢,形态发生变化,光合色素含量也存在差异。此外,与野生型菌株相比,三种物种中的除草剂抗性细胞的光合作用性能通常较低。这些结果表明,由于选择了除草剂抗性突变体,这两种除草剂在淡水生态系统中的引入可能会导致初级生产力的减少,而这些突变体的光合作用性能比野生型种群要低。