Suppr超能文献

结合 STDP 和二进制网络,从图像和稀疏奖励中进行强化学习。

Combining STDP and binary networks for reinforcement learning from images and sparse rewards.

机构信息

Centro de Informática - CIn, Universidade Federal de Pernambuco, Av. Jornalista Aníbal Fernandes, s/n, Cidade Universitária, 50.740-560, Brazil.

出版信息

Neural Netw. 2021 Dec;144:496-506. doi: 10.1016/j.neunet.2021.09.010. Epub 2021 Sep 17.

Abstract

Spiking neural networks (SNNs) aim to replicate energy efficiency, learning speed and temporal processing of biological brains. However, accuracy and learning speed of such networks is still behind reinforcement learning (RL) models based on traditional neural models. This work combines a pre-trained binary convolutional neural network with an SNN trained online through reward-modulated STDP in order to leverage advantages of both models. The spiking network is an extension of its previous version, with improvements in architecture and dynamics to address a more challenging task. We focus on extensive experimental evaluation of the proposed model with optimized state-of-the-art baselines, namely proximal policy optimization (PPO) and deep Q network (DQN). The models are compared on a grid-world environment with high dimensional observations, consisting of RGB images with up to 256 × 256 pixels. The experimental results show that the proposed architecture can be a competitive alternative to deep reinforcement learning (DRL) in the evaluated environment and provide a foundation for more complex future applications of spiking networks.

摘要

尖峰神经网络 (SNN) 旨在复制生物大脑的能量效率、学习速度和时间处理能力。然而,此类网络的准确性和学习速度仍落后于基于传统神经网络模型的强化学习 (RL) 模型。这项工作结合了经过预训练的二进制卷积神经网络和通过奖励调制 STDP 在线训练的 SNN,以利用这两种模型的优势。尖峰网络是其前一个版本的扩展,在架构和动力学方面进行了改进,以解决更具挑战性的任务。我们专注于通过优化的最先进基线(即近端策略优化 (PPO) 和深度 Q 网络 (DQN))对所提出的模型进行广泛的实验评估。在具有高维观测值的网格世界环境中对模型进行比较,观测值由高达 256×256 像素的 RGB 图像组成。实验结果表明,在所评估的环境中,所提出的架构可以作为深度强化学习 (DRL) 的一种有竞争力的替代方案,并为未来更复杂的尖峰网络应用提供基础。

相似文献

3
Toward robust and scalable deep spiking reinforcement learning.迈向稳健且可扩展的深度脉冲强化学习。
Front Neurorobot. 2023 Jan 20;16:1075647. doi: 10.3389/fnbot.2022.1075647. eCollection 2022.
4
Deep Reinforcement Learning With Modulated Hebbian Plus Q-Network Architecture.具有调制赫布型加Q网络架构的深度强化学习
IEEE Trans Neural Netw Learn Syst. 2022 May;33(5):2045-2056. doi: 10.1109/TNNLS.2021.3110281. Epub 2022 May 2.
5
Human-Level Control Through Directly Trained Deep Spiking Q-Networks.通过直接训练的深度脉冲Q网络实现人类水平的控制。
IEEE Trans Cybern. 2023 Nov;53(11):7187-7198. doi: 10.1109/TCYB.2022.3198259. Epub 2023 Oct 17.
8
Optimizing Deeper Spiking Neural Networks for Dynamic Vision Sensing.深度尖峰神经网络在动态视觉传感中的优化。
Neural Netw. 2021 Dec;144:686-698. doi: 10.1016/j.neunet.2021.09.022. Epub 2021 Oct 5.
9
Deep Reinforcement Learning on Autonomous Driving Policy With Auxiliary Critic Network.基于辅助评论家网络的自动驾驶策略深度强化学习
IEEE Trans Neural Netw Learn Syst. 2023 Jul;34(7):3680-3690. doi: 10.1109/TNNLS.2021.3116063. Epub 2023 Jul 6.
10
Models developed for spiking neural networks.为脉冲神经网络开发的模型。
MethodsX. 2023 Mar 24;10:102157. doi: 10.1016/j.mex.2023.102157. eCollection 2023.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验