Suppr超能文献

对[具体内容未给出]的转录组分析揭示了乳酸胁迫下的碳水化合物代谢动态。

Transcriptomic Analysis of Reveals Carbohydrate Metabolic Dynamics Under Lactic Acid Stress.

作者信息

Han Dong, Yan Qiaojuan, Liu Jun, Jiang Zhengqiang, Yang Shaoqing

机构信息

Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.

School of Food and Health, Beijing Technology and Business University, Beijing, China.

出版信息

Front Microbiol. 2021 Sep 16;12:736411. doi: 10.3389/fmicb.2021.736411. eCollection 2021.

Abstract

Stress physiology of lactic acid bacteria (LAB) is crucial to their ecological fitness and applicational implications. As a self-imposed stress, lactic acid is the major final metabolic product of LAB and its accumulation can be detrimental to bacterial cells. However, the relationship between LAB carbohydrate metabolism, the primary energy supplying bioactivities, and lactic acid stress responses is not fully understood. has been recognized as an important cell factory and demonstrated probiotic activities. This study investigated behavior of under lactic and acetic acid stresses, particularly with supplementations of metabolizable carbohydrates. Lactic and acetic acid retain similar growth stagnation effect, and both resulted in cell death in . All metabolizable carbohydrates improved bacterial survival compared to lactic acid control, while xylooligosaccharides (XOS) exerted the highest viability protective efficacy, 0.82 log CFU/mL higher population survived than other carbohydrates after 30 h of incubation. RNA-seq pipeline showcased the intensive global transcriptional responses of to lactic acid, which caused significant regulations (more than 2 Log fold) of 16.5% of total mRNA coding genes. Glucose mainly led to gene suppressions (83 genes) while XOS led to gene up-regulations (19 genes) under lactic acid stress. RT-qPCR study found that RNA polymerase-centered transcriptional regulation is the primary regulatory approach in evaluated culture conditions. The synergy between lactic acid stress and carbohydrate metabolism should be attentively contemplated in future studies and applications.

摘要

乳酸菌(LAB)的应激生理学对其生态适应性和应用意义至关重要。作为一种自我施加的应激,乳酸是LAB的主要最终代谢产物,其积累可能对细菌细胞有害。然而,LAB碳水化合物代谢、主要能量供应生物活性与乳酸应激反应之间的关系尚未完全了解。LAB已被公认为重要的细胞工厂并具有益生菌活性。本研究调查了LAB在乳酸和乙酸应激下的行为,特别是在添加可代谢碳水化合物的情况下。乳酸和乙酸具有相似的生长停滞效应,且两者都会导致LAB细胞死亡。与乳酸对照组相比,所有可代谢碳水化合物均提高了细菌存活率,而低聚木糖(XOS)的生存能力保护效果最高,孵育30小时后存活的菌数比其他碳水化合物高0.82 log CFU/mL。RNA测序流程展示了LAB对乳酸的强烈全局转录反应,乳酸导致16.5%的总mRNA编码基因发生显著调控(超过2倍对数)。在乳酸应激下,葡萄糖主要导致基因抑制(83个基因),而XOS导致基因上调(19个基因)。逆转录定量聚合酶链反应(RT-qPCR)研究发现,在评估的培养条件下,以RNA聚合酶为中心的转录调控是主要的调控方式。在未来的研究和应用中,应仔细考虑乳酸应激与碳水化合物代谢之间的协同作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45ad/8481956/d5ab432cf160/fmicb-12-736411-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验