Suppr超能文献

用于研究三阶流体磁流体动力学流动以分析电线涂层的监督学习算法

Supervised Learning Algorithm to Study the Magnetohydrodynamic Flow of a Third Grade Fluid for the Analysis of Wire Coating.

作者信息

Aljohani Jawaher Lafi, Alaidarous Eman Salem, Raja Muhammad Asif Zahoor, Alhothuali Muhammed Shabab, Shoaib Muhammad

机构信息

Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.

Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, 64002 Yunlin Taiwan, R.O.C.

出版信息

Arab J Sci Eng. 2022;47(6):7505-7518. doi: 10.1007/s13369-021-06212-3. Epub 2021 Sep 29.

Abstract

In the present study, modeling of intelligent numerical computing through Levenberg-Marquardt back propagation-based supervised neural network (LMB-SNN) is incorporated to analyze the magnetohydrodynamic flow of a third grade fluid for wire coating analysis (MHD-TGFWCA). The original mathematical formulations in terms of partial differential equations for MHD-TGFWCA are converted into a system of ordinary differential equations through dimensionless parameters and a suitable transformation mechanism. A reference dataset for the LMB-SNNs scheme is created with Adam's numerical technique for various scenarios by variation of different physical quantities such as third grade fluid parameter, magnetic parameter, and the velocity ratio parameter. To compute the approximate solution for MHD-TGFWCA in terms of various scenarios, the training, testing, and validation operations are carried out in parallel to adjust neural networks by developing the mean square error function (MSEF) through Levenberg-Marquardt back-propagation. The comparative analyses and performance studies through outputs of MSEF, regression illustrations, and error histograms validate the effectiveness of the suggested solver LMB-SNNs. The method's precision is verified by the closest numerical outputs of both built and dataset values with similar levels to .

摘要

在本研究中,引入了基于Levenberg-Marquardt反向传播的监督神经网络(LMB-SNN)进行智能数值计算建模,以分析用于线缆涂层分析的三阶流体磁流体动力学流动(MHD-TGFWCA)。通过无量纲参数和适当的变换机制,将MHD-TGFWCA的偏微分方程形式的原始数学公式转换为常微分方程组。利用Adam数值技术,通过改变诸如三阶流体参数、磁参数和速度比参数等不同物理量,为LMB-SNNs方案创建了各种场景下的参考数据集。为了计算MHD-TGFWCA在各种场景下的近似解,通过Levenberg-Marquardt反向传播开发均方误差函数(MSEF),并行进行训练、测试和验证操作来调整神经网络。通过MSEF输出、回归图和误差直方图进行的对比分析和性能研究验证了所提出的求解器LMB-SNNs的有效性。该方法的精度通过与数据集值具有相似水平的构建值和数值输出的最接近程度得到验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9472/8479500/4521fe795eab/13369_2021_6212_Fig1_HTML.jpg

相似文献

1
Supervised Learning Algorithm to Study the Magnetohydrodynamic Flow of a Third Grade Fluid for the Analysis of Wire Coating.
Arab J Sci Eng. 2022;47(6):7505-7518. doi: 10.1007/s13369-021-06212-3. Epub 2021 Sep 29.
2
Application of Levenberg-Marquardt technique for electrical conducting fluid subjected to variable viscosity.
Indian J Phys Proc Indian Assoc Cultiv Sci (2004). 2022;96(13):3901-3919. doi: 10.1007/s12648-022-02307-1. Epub 2022 Apr 18.
5
Intelligent computing technique based supervised learning for squeezing flow model.
Sci Rep. 2021 Oct 1;11(1):19597. doi: 10.1038/s41598-021-99108-z.
6
Innovative thermal management in the presence of ferromagnetic hybrid nanoparticles.
Sci Rep. 2024 Aug 6;14(1):18203. doi: 10.1038/s41598-024-68830-9.
7
Cattaneo-Christov heat flow model at mixed impulse stagnation point past a Riga plate: Levenberg-Marquardt backpropagation method.
Heliyon. 2023 Nov 25;9(12):e22765. doi: 10.1016/j.heliyon.2023.e22765. eCollection 2023 Dec.
10
Neuro-Computing for Hall Current and MHD Effects on the Flow of Micro-Polar Nano-Fluid Between Two Parallel Rotating Plates.
Arab J Sci Eng. 2022;47(12):16371-16391. doi: 10.1007/s13369-022-06925-z. Epub 2022 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验