Suppr超能文献

关于霍尔电流和磁流体动力学效应作用下两平行旋转平板间微极性纳米流体流动的神经计算

Neuro-Computing for Hall Current and MHD Effects on the Flow of Micro-Polar Nano-Fluid Between Two Parallel Rotating Plates.

作者信息

Ullah Hakeem, Shoaib Muhammad, Akbar Ajed, Raja Muhammad Asif Zahoor, Islam Saeed, Nisar Kottakkaran Sooppy

机构信息

Department of Mathematics, Abdul Wali Khan University, Mardan, 23200 Khyber Pakhtunkhwa Pakistan.

Department of Mathematics, COMSATS University Islamabad, Attock Campus, Attock, 43600 Pakistan.

出版信息

Arab J Sci Eng. 2022;47(12):16371-16391. doi: 10.1007/s13369-022-06925-z. Epub 2022 May 24.

Abstract

The present works focus on the effects of electric and magnetic fields on the flow of micro-polar nano-fluid between two parallel plates with rotation under the impact of Hall current (EMMN-PPRH) has considered by using Artificial Neural Networks with the scheme of Levenberg-Marquardt backpropagation (ANN-SLMB). The nonlinear PDEs are transformed into nonlinear ODEs by employing similarity variables. By varying different parameters such as coupling parameter, electric parameter, rotation parameter, viscosity parameter, Prandtl number and the Brownian motion parameter, a dataset for recommended ANN-SLMB is produced for numerous scenarios through utilizing homotopy analysis method (HAM). The ANN-SLMB training, testing and validation technique have been used to analyze the approximate solution of individual cases, and the recommended model has matched for confirmation. After that, regression analysis, MSE, and histogram investigations were utilized to validate the proposed ANN-SLMB. The recommended technique is distinguished nearest of the suggested and reference findings, with an accuracy level ranging from 10 to 10.

摘要

目前的工作聚焦于在霍尔电流影响下,具有旋转的两个平行板之间微极性纳米流体流动的电场和磁场效应(EMMN - PPRH),通过使用带有列文伯格 - 马夸特反向传播方案的人工神经网络(ANN - SLMB)来进行研究。通过采用相似变量,将非线性偏微分方程转化为非线性常微分方程。通过改变不同参数,如耦合参数、电参数、旋转参数、粘度参数、普朗特数和布朗运动参数,利用同伦分析方法(HAM)针对众多情况生成了用于推荐的ANN - SLMB的数据集。已使用ANN - SLMB训练、测试和验证技术来分析各个案例的近似解,并对推荐模型进行匹配确认。之后,利用回归分析、均方误差和直方图研究来验证所提出的ANN - SLMB。推荐技术与建议结果和参考结果最为接近,准确率范围为10到10 。 (注:最后“准确率范围为10到10”表述似乎有误,可能影响整体理解)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5db8/9127499/40c94cdaee7c/13369_2022_6925_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验