Khan Saraj, Asjad Muhammad Imran, Riaz Muhammad Bilal, Muhammad Taseer, Aslam Muhammad Naeem
Department of Mathematics, University of Management and Technology Lahore, 54770, Lahore, Pakistan.
Department of Computer Science and Mathematics, Lebanese American University, Byblos, Lebanon.
Sci Rep. 2024 Aug 6;14(1):18203. doi: 10.1038/s41598-024-68830-9.
In the present work, a simple intelligence-based computation of artificial neural networks with the Levenberg-Marquardt backpropagation algorithm is developed to analyze the new ferromagnetic hybrid nanofluid flow model in the presence of a magnetic dipole within the context of flow over a stretching sheet. A combination of cobalt and iron (III) oxide (Co-FeO) is strategically selected as ferromagnetic hybrid nanoparticles within the base fluid, water. The initial representation of the developed ferromagnetic hybrid nanofluid flow model, which is a system of highly nonlinear partial differential equations, is transformed into a system of nonlinear ordinary differential equations using appropriate similarity transformations. The reference data set of the possible outcomes is obtained from bvp4c for varying the parameters of the ferromagnetic hybrid nanofluid flow model. The estimated solutions of the proposed model are described during the testing, training, and validation phases of the backpropagated neural network. The performance evaluation and comparative study of the algorithm are carried out by regression analysis, error histograms, function fitting graphs, and mean squared error results. The findings of our study analyze the increasing effect of the ferrohydrodynamic interaction parameter to enhance the temperature and velocity profiles, while increasing the thermal relaxation parameter decreases the temperature profile. The performance on MSE was shown for the temperature and velocity profiles of the developed model about 9.1703e, 7.1313ee, 3.1462e, and 4.8747e. The accuracy of the artificial neural networks with the Levenberg-Marquardt algorithm method is confirmed through various analyses and comparative results with the reference data. The purpose of this study is to enhance understanding of ferromagnetic hybrid nanofluid flow models using artificial neural networks with the Levenberg-Marquardt algorithm, offering precise analysis of key parameter effects on temperature and velocity profiles. Future studies will provide novel soft computing methods that leverage artificial neural networks to effectively solve problems in fluid mechanics and expand to engineering applications, improving their usefulness in tackling real-world problems.
在当前工作中,开发了一种基于简单智能的人工神经网络计算方法,采用Levenberg-Marquardt反向传播算法,以分析在拉伸片材流动背景下存在磁偶极子时的新型铁磁混合纳米流体流动模型。在基流体水相中,战略性地选择钴和氧化铁(III)(Co-FeO)的组合作为铁磁混合纳米颗粒。所开发的铁磁混合纳米流体流动模型最初表现为高度非线性偏微分方程组,通过适当的相似变换将其转化为非线性常微分方程组。通过改变铁磁混合纳米流体流动模型的参数,从bvp4c获得可能结果的参考数据集。在反向传播神经网络的测试、训练和验证阶段描述了所提出模型的估计解。通过回归分析、误差直方图、函数拟合图和均方误差结果对算法进行性能评估和比较研究。我们的研究结果分析了铁流体动力学相互作用参数增加对温度和速度分布的增强作用,而热松弛参数增加则会降低温度分布。所开发模型的温度和速度分布在均方误差方面的表现分别约为9.1703e、7.1313ee、3.1462e和4.8747e。通过各种分析以及与参考数据的比较结果,证实了Levenberg-Marquardt算法方法的人工神经网络的准确性。本研究的目的是通过使用Levenberg-Marquardt算法的人工神经网络来增强对铁磁混合纳米流体流动模型的理解,精确分析关键参数对温度和速度分布的影响。未来的研究将提供新颖的软计算方法,利用人工神经网络有效解决流体力学问题并扩展到工程应用,提高其在解决实际问题中的实用性。