文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种基于七个基因特征的新型预后模型,用于预测淋巴结阴性三阴性乳腺癌的远处转移

A Novel Seven Gene Signature-Based Prognostic Model to Predict Distant Metastasis of Lymph Node-Negative Triple-Negative Breast Cancer.

作者信息

Peng Wenting, Lin Caijin, Jing Shanshan, Su Guanhua, Jin Xi, Di Genhong, Shao Zhiming

机构信息

Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.

Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China.

出版信息

Front Oncol. 2021 Sep 16;11:746763. doi: 10.3389/fonc.2021.746763. eCollection 2021.


DOI:10.3389/fonc.2021.746763
PMID:34604089
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8481824/
Abstract

BACKGROUND: The prognosis of lymph node-negative triple-negative breast cancer (TNBC) is still worse than that of other subtypes despite adjuvant chemotherapy. Reliable prognostic biomarkers are required to identify lymph node-negative TNBC patients at a high risk of distant metastasis and optimize individual treatment. METHODS: We analyzed the RNA sequencing data of primary tumor tissue and the clinicopathological data of 202 lymph node-negative TNBC patients. The cohort was randomly divided into training and validation sets. Least absolute shrinkage and selection operator Cox regression and multivariate Cox regression were used to construct the prognostic model. RESULTS: A clinical prognostic model, seven-gene signature, and combined model were constructed using the training set and validated using the validation set. The seven-gene signature was established based on the genomic variables associated with distant metastasis after shrinkage correction. The difference in the risk of distant metastasis between the low- and high-risk groups was statistically significant using the seven-gene signature (training set: < 0.001; validation set: = 0.039). The combined model showed significance in the training set ( < 0.001) and trended toward significance in the validation set ( = 0.071). The seven-gene signature showed improved prognostic accuracy relative to the clinical signature in the training data (AUC value of 4-year ROC, 0.879 0.699, = 0.046). Moreover, the composite clinical and gene signature also showed improved prognostic accuracy relative to the clinical signature (AUC value of 4-year ROC: 0.888 0.699, = 0.029; AUC value of 5-year ROC: 0.882 0.693, = 0.038). A nomogram model was constructed with the seven-gene signature, patient age, and tumor size. CONCLUSIONS: The proposed signature may improve the risk stratification of lymph node-negative TNBC patients. High-risk lymph node-negative TNBC patients may benefit from treatment escalation.

摘要

背景:尽管进行了辅助化疗,但淋巴结阴性三阴性乳腺癌(TNBC)的预后仍比其他亚型差。需要可靠的预后生物标志物来识别远处转移风险高的淋巴结阴性TNBC患者,并优化个体化治疗。 方法:我们分析了202例淋巴结阴性TNBC患者的原发肿瘤组织RNA测序数据和临床病理数据。该队列被随机分为训练集和验证集。使用最小绝对收缩和选择算子Cox回归及多变量Cox回归构建预后模型。 结果:使用训练集构建了临床预后模型、七基因特征和联合模型,并使用验证集进行验证。七基因特征基于收缩校正后与远处转移相关的基因组变量建立。使用七基因特征时,低风险组和高风险组之间远处转移风险的差异具有统计学意义(训练集:<0.001;验证集:=0.039)。联合模型在训练集中具有显著性(<0.001),在验证集中有显著趋势(=0.071)。在训练数据中,七基因特征相对于临床特征显示出更高的预后准确性(4年ROC的AUC值,0.879对0.699,=0.046)。此外,综合临床和基因特征相对于临床特征也显示出更高的预后准确性(4年ROC的AUC值:0.888对0.699,=0.029;5年ROC的AUC值:0.882对0.693,=0.038)。用七基因特征、患者年龄和肿瘤大小构建了列线图模型。 结论:所提出的特征可能改善淋巴结阴性TNBC患者的风险分层。高风险淋巴结阴性TNBC患者可能从强化治疗中获益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4c4/8481824/fd928b1adb18/fonc-11-746763-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4c4/8481824/19c39495907f/fonc-11-746763-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4c4/8481824/704a23a9b4aa/fonc-11-746763-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4c4/8481824/8809ffb9b0f0/fonc-11-746763-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4c4/8481824/9ca75463a326/fonc-11-746763-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4c4/8481824/fd928b1adb18/fonc-11-746763-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4c4/8481824/19c39495907f/fonc-11-746763-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4c4/8481824/704a23a9b4aa/fonc-11-746763-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4c4/8481824/8809ffb9b0f0/fonc-11-746763-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4c4/8481824/9ca75463a326/fonc-11-746763-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4c4/8481824/fd928b1adb18/fonc-11-746763-g005.jpg

相似文献

[1]
A Novel Seven Gene Signature-Based Prognostic Model to Predict Distant Metastasis of Lymph Node-Negative Triple-Negative Breast Cancer.

Front Oncol. 2021-9-16

[2]
Construction and Validation of a Prognostic Risk Model for Triple-Negative Breast Cancer Based on Autophagy-Related Genes.

Front Oncol. 2022-2-4

[3]
Integrative 3' Untranslated Region-Based Model to Identify Patients with Low Risk of Axillary Lymph Node Metastasis in Operable Triple-Negative Breast Cancer.

Oncologist. 2018-8-6

[4]
A prognostic model of triple-negative breast cancer based on miR-27b-3p and node status.

PLoS One. 2014-6-19

[5]
A combined hypoxia and immune gene signature for predicting survival and risk stratification in triple-negative breast cancer.

Aging (Albany NY). 2021-8-2

[6]
Establishment and verification of a nomogram to predict tumor-specific mortality risk in triple-negative breast cancer: a competing risk model based on the SEER cohort study.

Gland Surg. 2022-12

[7]
An iron metabolism and immune related gene signature for the prediction of clinical outcome and molecular characteristics of triple-negative breast cancer.

BMC Cancer. 2022-6-7

[8]
Construction of an immune-related genes nomogram for the preoperative prediction of axillary lymph node metastasis in triple-negative breast cancer.

Artif Cells Nanomed Biotechnol. 2020-12

[9]
Construction and validation of a macrophage polarization-related prognostic index to predict the overall survival in patients with early-stage triple-negative breast cancer.

Gland Surg. 2023-2-28

[10]
Identification and Validation of a Novel Glycolysis-Related Gene Signature for Predicting the Prognosis and Therapeutic Response in Triple-Negative Breast Cancer.

Adv Ther. 2023-1

引用本文的文献

[1]
Identification and panoramic analysis of drug response-related genes in triple negative breast cancer using as an example NVP-BEZ235.

Sci Rep. 2023-4-12

[2]
Identification of Prognostic Biomarkers for Breast Cancer Metastasis Using Penalized Additive Hazards Regression Model.

Cancer Inform. 2023-3-21

[3]
MLSP: A bioinformatics tool for predicting molecular subtypes and prognosis in patients with breast cancer.

Comput Struct Biotechnol J. 2022-11-11

[4]
A comprehensive genomic and transcriptomic dataset of triple-negative breast cancers.

Sci Data. 2022-9-24

本文引用的文献

[1]
Evaluation of Racial/Ethnic Differences in Treatment and Mortality Among Women With Triple-Negative Breast Cancer.

JAMA Oncol. 2021-7-1

[2]
Cancer Cell Intrinsic and Immunologic Phenotypes Determine Clinical Outcomes in Basal-like Breast Cancer.

Clin Cancer Res. 2021-6-1

[3]
Tumor microenvironment characterization in triple-negative breast cancer identifies prognostic gene signature.

Aging (Albany NY). 2021-2-1

[4]
Cancer Statistics, 2021.

CA Cancer J Clin. 2021-1

[5]
Validation of CSN1S1 transcriptional expression, promoter methylation, and prognostic power in breast cancer using independent datasets.

Biochem Biophys Rep. 2020-12-2

[6]
Prognostication of a 13-immune-related-gene signature in patients with early triple-negative breast cancer.

Breast Cancer Res Treat. 2020-11

[7]
DNER promotes epithelial-mesenchymal transition and prevents chemosensitivity through the Wnt/β-catenin pathway in breast cancer.

Cell Death Dis. 2020-8-18

[8]
A panel of eight microRNAs is a good predictive parameter for triple-negative breast cancer relapse.

Theranostics. 2020

[9]
A novel prognostic two-gene signature for triple negative breast cancer.

Mod Pathol. 2020-11

[10]
Breast Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology.

J Natl Compr Canc Netw. 2020-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索