Luo Hanjia, Hong Ruoxi, Xu Yadong, Zheng Qiufan, Xia Wen, Lu Qianyi, Jiang Kuikui, Xu Fei, Chen Miao, Shi Dingbo, Deng Wuguo, Wang Shusen
Department of Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China.
Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
Gland Surg. 2023 Feb 28;12(2):225-242. doi: 10.21037/gs-23-6. Epub 2023 Feb 27.
Triple-negative breast cancer (TNBC) is a highly heterogeneous disease and the current prognostic system cannot meet the clinical need. Interactions between immune responsiveness and tumor cells plays a key role in the progression of TNBC and macrophages are vital component of immune cells. A prognostic model based on macrophages may have great accuracy and clinical utility.
For model development, we screened early stage (without metastasis) TNBC patients from The Cancer Genome Atlas (TCGA) database. We extracted messenger RNA (mRNA) expression data and clinical data including age, race, tumor size, lymph node status and tumor stage. The follow up time and vital status were also retrieved for overall survival calculation. Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) was used to calculate the immune cell composition of each sample. Weighted gene co-expression network analysis (WGCNA) was used to identify M1-like macrophage-related genes. Combining least absolute shrinkage and selection operator (LASSO) with multivariate Cox regression, the M1-like macrophage polarization-related prognostic index (MRPI) was established. We obtained TNBC patients in Gene Expression Omnibus (GEO) database through PAM50 method and retrieved the mRNA expression data and survival data. The Harrell's concordance index (CI), the area under the receiver operating characteristic (ROC) curves (AUCs) and the calibration curve were used to evaluate the developed model.
We obtained 166 early TNBC cases and 113 normal tissue cases for model building, along with 76 samples from GSE58812 cohort for model validation. CIBERSORT analysis suggested obvious infiltration of macrophages, especially M1-like macrophages in early TNBC. Four genes were eventually identified for the construction of MPRI in the training set. The AUCs at 2 years, 3 years, and 5 years in the training cohort were 0.855, 0.881 and 0.893, respectively; and the AUCs at 2 years, 3 years, and 5 years in the validation cohort were 0.887, 0.792 and 0.722, respectively. Calibration curves indicated good predictive ability and high consistency of our model.
MRPI is a promising biomarker for predicting the prognosis of early-stage TNBC, which may indicate personalized treatment and follow-up strategies and thus may improve the prognosis.
三阴性乳腺癌(TNBC)是一种高度异质性疾病,当前的预后系统无法满足临床需求。免疫反应性与肿瘤细胞之间的相互作用在TNBC进展中起关键作用,巨噬细胞是免疫细胞的重要组成部分。基于巨噬细胞的预后模型可能具有很高的准确性和临床实用性。
为了构建模型,我们从癌症基因组图谱(TCGA)数据库中筛选了早期(无转移)TNBC患者。我们提取了信使核糖核酸(mRNA)表达数据和临床数据,包括年龄、种族、肿瘤大小、淋巴结状态和肿瘤分期。还获取了随访时间和生存状态以计算总生存期。通过估计RNA转录本相对子集进行细胞类型鉴定(CIBERSORT)用于计算每个样本的免疫细胞组成。加权基因共表达网络分析(WGCNA)用于鉴定M1样巨噬细胞相关基因。结合最小绝对收缩和选择算子(LASSO)与多变量Cox回归,建立了M1样巨噬细胞极化相关预后指数(MRPI)。我们通过PAM50方法在基因表达综合数据库(GEO)中获取TNBC患者,并检索mRNA表达数据和生存数据。使用Harrell一致性指数(CI)、受试者操作特征(ROC)曲线下面积(AUC)和校准曲线来评估所构建的模型。
我们获得了166例早期TNBC病例和113例正常组织病例用于模型构建,以及来自GSE58812队列的76个样本用于模型验证。CIBERSORT分析表明巨噬细胞明显浸润,尤其是早期TNBC中的M1样巨噬细胞。最终在训练集中确定了4个用于构建MPRI的基因。训练队列中2年、3年和5年的AUC分别为0.855、0.881和0.893;验证队列中2年、3年和5年的AUC分别为0.887、0.792和0.722。校准曲线表明我们的模型具有良好的预测能力和高度一致性。
MRPI是预测早期TNBC预后的一个有前景的生物标志物,它可能为个性化治疗和随访策略提供依据,从而改善预后。