Suppr超能文献

使用受折纸启发的可变形超材料实现适应性隐身管理

Adaptable Invisibility Management Using Kirigami-Inspired Transformable Metamaterials.

作者信息

Xu He-Xiu, Wang Mingzhao, Hu Guangwei, Wang Shaojie, Wang Yanzhao, Wang Chaohui, Zeng Yixuan, Li Jiafang, Zhang Shuang, Huang Wei

机构信息

Air and Missile Defense College, Air Force Engineering University, Xi'an 710051, China.

Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China.

出版信息

Research (Wash D C). 2021 Sep 10;2021:9806789. doi: 10.34133/2021/9806789. eCollection 2021.

Abstract

Many real-world applications, including adaptive radar scanning and smart stealth, require reconfigurable multifunctional devices to simultaneously manipulate multiple degrees of freedom of electromagnetic (EM) waves in an on-demand manner. Recently, kirigami technique, affording versatile and unconventional structural transformation, has been introduced to endow metamaterials with the capability of controlling EM waves in a reconfigurable manner. Here, we report for a kirigami-inspired sparse meta-architecture, with structural density of 1.5% in terms of the occupation space, for adaptive invisibility based on independent operations of frequency, bandwidth, and amplitude. Based on the general principle of dipolar management via structural reconstruction of kirigami-inspired meta-architectures, we demonstrate reconfigurable invisibility management with abundant EM functions and a wide tuning range using three enantiomers (A, B, and C) of different geometries characterized by the folding angle . Our strategy circumvents issues of limited abilities, narrow tuning range, extreme condition, and high cost raised by available reconfigurable metamaterials, providing a new avenue toward multifunctional smart devices.

摘要

许多实际应用,包括自适应雷达扫描和智能隐身,都需要可重构的多功能设备以按需方式同时操纵电磁波的多个自由度。最近,折纸技术能够实现通用且非常规的结构转变,已被引入以使超材料具有以可重构方式控制电磁波的能力。在此,我们报道一种受折纸启发的稀疏超结构,基于频率、带宽和幅度的独立操作实现自适应隐身,其结构密度按占用空间计算为1.5%。基于通过受折纸启发的超结构的结构重构进行偶极子管理的一般原理,我们使用三种具有不同折叠角几何形状的对映体(A、B和C)展示了具有丰富电磁功能和宽调谐范围的可重构隐身管理。我们的策略规避了现有可重构超材料所带来的能力有限、调谐范围窄、极端条件和高成本等问题,为多功能智能设备开辟了一条新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5df3/8449819/109b277af4f4/RESEARCH2021-9806789.001.jpg

相似文献

1
Adaptable Invisibility Management Using Kirigami-Inspired Transformable Metamaterials.
Research (Wash D C). 2021 Sep 10;2021:9806789. doi: 10.34133/2021/9806789. eCollection 2021.
2
A new class of transformable kirigami metamaterials for reconfigurable electromagnetic systems.
Sci Rep. 2023 Jan 21;13(1):1219. doi: 10.1038/s41598-022-27291-8.
3
Reconfigurable Origami/Kirigami Metamaterial Absorbers Developed by Fast Inverse Design and Low-Concentration MXene Inks.
ACS Appl Mater Interfaces. 2024 Aug 14;16(32):42448-42460. doi: 10.1021/acsami.4c07084. Epub 2024 Jul 30.
6
Toward mechanical proprioception in autonomously reconfigurable kirigami-inspired mechanical systems.
Philos Trans A Math Phys Eng Sci. 2024 Oct 7;382(2283):20240116. doi: 10.1098/rsta.2024.0116.
8
An additive framework for kirigami design.
Nat Comput Sci. 2023 May;3(5):443-454. doi: 10.1038/s43588-023-00448-9. Epub 2023 May 25.
9
Engineering Kirigami Frameworks Toward Real-World Applications.
Adv Mater. 2024 Mar;36(9):e2308560. doi: 10.1002/adma.202308560. Epub 2023 Dec 5.
10
Kirigami-Inspired Inflatables with Programmable Shapes.
Adv Mater. 2020 Aug;32(33):e2001863. doi: 10.1002/adma.202001863. Epub 2020 Jul 6.

引用本文的文献

1
Synthetic nano-kirigami with high deformability for reconfigurable information displays.
Nat Commun. 2025 Aug 22;16(1):7843. doi: 10.1038/s41467-025-63169-9.
3
Numerical Simulations of Single-Step Holographic Interferometry for Split-Ring Metamaterial Fabrication.
Nanomaterials (Basel). 2025 Jan 8;15(2):86. doi: 10.3390/nano15020086.
4
Full-space trifunctional metasurface with independent control of amplitude and phase for circularly polarized waves.
Nanophotonics. 2024 Oct 23;13(24):4471-4481. doi: 10.1515/nanoph-2024-0441. eCollection 2024 Nov.
5
Programmable metasurface for front-back scattering communication.
Nanophotonics. 2023 Aug 3;12(18):3653-3661. doi: 10.1515/nanoph-2023-0365. eCollection 2023 Sep.
6
Origami metamaterials for ultra-wideband and large-depth reflection modulation.
Nat Commun. 2024 Apr 12;15(1):3181. doi: 10.1038/s41467-024-46907-3.
7
Chimera metasurface for multiterrain invisibility.
Proc Natl Acad Sci U S A. 2024 Feb 6;121(6):e2309096120. doi: 10.1073/pnas.2309096120. Epub 2024 Jan 29.
8
In situ Simulation of Thermal Reality.
Research (Wash D C). 2023 Sep 22;6:0222. doi: 10.34133/research.0222. eCollection 2023.
9
Broadband Plasmonic Metamaterial Optical Absorber for the Visible to Near-Infrared Region.
Nanomaterials (Basel). 2023 Feb 4;13(4):626. doi: 10.3390/nano13040626.

本文引用的文献

1
Deterministic Approach to Achieve Full-Polarization Cloak.
Research (Wash D C). 2021 Mar 1;2021:6382172. doi: 10.34133/2021/6382172. eCollection 2021.
2
Origami-based microwave absorber with a reconfigurable bandwidth.
Opt Lett. 2021 Mar 15;46(6):1349-1352. doi: 10.1364/OL.419093.
4
Reconfigurable honeycomb metamaterial absorber having incident angular stability.
Sci Rep. 2020 Sep 10;10(1):14920. doi: 10.1038/s41598-020-72105-4.
5
Electrically-controlled digital metasurface device for light projection displays.
Nat Commun. 2020 Jul 17;11(1):3574. doi: 10.1038/s41467-020-17390-3.
6
Bioinspired kirigami metasurfaces as assistive shoe grips.
Nat Biomed Eng. 2020 Aug;4(8):778-786. doi: 10.1038/s41551-020-0564-3. Epub 2020 Jun 1.
7
Frequency-Domain and Spatial-Domain Reconfigurable Metasurface.
ACS Appl Mater Interfaces. 2020 May 20;12(20):23554-23564. doi: 10.1021/acsami.0c02467. Epub 2020 May 8.
8
Fano-Enhanced Circular Dichroism in Deformable Stereo Metasurfaces.
Adv Mater. 2020 Feb;32(8):e1907077. doi: 10.1002/adma.201907077. Epub 2020 Jan 16.
9
Origami Metawall: Mechanically Controlled Absorption and Deflection of Light.
Adv Sci (Weinh). 2019 Oct 29;6(23):1901434. doi: 10.1002/advs.201901434. eCollection 2019 Dec.
10
Tunable/Reconfigurable Metasurfaces: Physics and Applications.
Research (Wash D C). 2019 Jul 7;2019:1849272. doi: 10.34133/2019/1849272. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验