Credidio Bruno, Pugini Michele, Malerz Sebastian, Trinter Florian, Hergenhahn Uwe, Wilkinson Iain, Thürmer Stephan, Winter Bernd
Molecular Physics Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany.
Institute for Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
Phys Chem Chem Phys. 2022 Jan 19;24(3):1310-1325. doi: 10.1039/d1cp03165a.
Recent advancement in quantitative liquid-jet photoelectron spectroscopy enables the accurate determination of the absolute-scale electronic energetics of liquids and species in solution. The major objective of the present work is the determination of the absolute lowest-ionization energy of liquid water, corresponding to the 1b orbital electron liberation, which is found to vary upon solute addition, and depends on the solute concentration. We discuss two prototypical aqueous salt solutions, NaI and tetrabutylammonium iodide, TBAI, with the latter being a strong surfactant. Our results reveal considerably different behavior of the liquid water 1b binding energy in each case. In the NaI solutions, the 1b energy increases by about 0.3 eV upon increasing the salt concentration from very dilute to near-saturation concentrations, whereas for TBAI the energy decreases by about 0.7 eV upon formation of a TBAI surface layer. The photoelectron spectra also allow us to quantify the solute-induced effects on the solute binding energies, as inferred from concentration-dependent energy shifts of the I 5p binding energy. For NaI, an almost identical I 5p shift is found as for the water 1b binding energy, with a larger shift occurring in the opposite direction for the TBAI solution. We show that the evolution of the water 1b energy in the NaI solutions can be primarily assigned to a change of water's electronic structure in the solution bulk. In contrast, apparent changes of the 1b energy for TBAI solutions can be related to changes of the solution work function which could arise from surface molecular dipoles. Furthermore, for both of the solutions studied here, the measured water 1b binding energies can be correlated with the extensive solution molecular structure changes occurring at high salt concentrations, where in the case of NaI, too few water molecules exist to hydrate individual ions and the solution adopts a crystalline-like phase. We also comment on the concentration-dependent shape of the second, 3a orbital liquid water ionization feature which is a sensitive signature of water-water hydrogen bond interactions.
定量液体喷射光电子能谱技术的最新进展使得准确测定液体和溶液中物质的绝对尺度电子能量成为可能。本工作的主要目标是测定液态水的绝对最低电离能,它对应于1b轨道电子的释放,发现其会因溶质的加入而变化,并且取决于溶质浓度。我们讨论了两种典型的盐水溶液,碘化钠(NaI)和四丁基碘化铵(TBAI),后者是一种强表面活性剂。我们的结果揭示了每种情况下液态水1b结合能的显著不同行为。在NaI溶液中,当盐浓度从非常稀增加到接近饱和浓度时,1b能量增加约0.3电子伏特,而对于TBAI,在形成TBAI表面层时能量下降约0.7电子伏特。光电子能谱还使我们能够量化溶质对溶质结合能的影响,这是根据I 5p结合能的浓度依赖性能量位移推断出来的。对于NaI,发现I 5p位移与水1b结合能几乎相同,而在TBAI溶液中则在相反方向出现更大的位移。我们表明,NaI溶液中1b能量的变化主要可归因于溶液本体中水的电子结构变化。相比之下,TBAI溶液中1b能量的明显变化可能与溶液功函数的变化有关,这可能由表面分子偶极子引起。此外,对于这里研究的两种溶液,所测量的水1b结合能可以与高盐浓度下发生的广泛溶液分子结构变化相关联,在NaI的情况下,存在的水分子太少以至于无法水合单个离子,溶液呈现出类似晶体的相。我们还对第二个3a轨道液态水电离特征的浓度依赖性形状进行了评论,它是水 - 水氢键相互作用的敏感标志。