Pohl Marvin N, Muchová Eva, Seidel Robert, Ali Hebatallah, Sršeň Štěpán, Wilkinson Iain, Winter Bernd, Slavíček Petr
Fritz-Haber-Institut der Max-Planck-Gesellschaft , Faradayweg 4-6 , D-14195 Berlin , Germany . Email:
Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , D-14195 Berlin , Germany.
Chem Sci. 2018 Nov 1;10(3):848-865. doi: 10.1039/c8sc03381a. eCollection 2019 Jan 21.
Ions have a profound effect on the geometrical structure of liquid water and an aqueous environment is known to change the electronic structure of ions. Here we combine photoelectron spectroscopy measurements from liquid microjets with molecular dynamical and quantum chemical calculations to address the reverse question, to what extent do ions affect the electronic structure of liquid water? We study aqueous solutions of sodium iodide (NaI) over a wide concentration range, from nearly pure water to 8 M solutions, recording spectra in the 5 to 60 eV binding energy range to include all water valence and the solute Na 2p, I 4d, and I 5p orbital ionization peaks. We observe that the electron binding energies of the solute ions change only slightly as a function of electrolyte concentration, less than 150 ± 60 meV over an ∼8 M range. Furthermore, the photoelectron spectrum of liquid water is surprisingly mildly affected as we transform the sample from a dilute aqueous salt solution to a viscous, crystalline-like phase. The most noticeable spectral changes are a negative binding energy shift of the water 1b ionizing transition (up to -370 ± 60 meV) and a narrowing of the flat-top shape water 3a ionization feature (up to 450 ± 90 meV). A novel computationally efficient technique is introduced to calculate liquid-state photoemission spectra using small clusters from molecular dynamics (MD) simulations embedded in dielectric continuum. This theoretical treatment captured the characteristic positions and structures of the aqueous photoemission peaks, reproducing the experimentally observed narrowing of the water 3a feature and weak sensitivity of the water binding energies to electrolyte concentration. The calculations allowed us to attribute the small binding energy shifts to ion-induced disruptions of intermolecular electronic interactions. Furthermore, they demonstrate the importance of considering concentration-dependent screening lengths for a correct description of the electronic structure of solvated systems. Accounting for electronic screening, the calculations highlight the minimal effect of electrolyte concentration on the 1b binding energy reference, in accord with the experiments. This leads us to a key finding that the isolated, lowest-binding-energy, 1b, photoemission feature of liquid water is a robust energetic reference for aqueous liquid microjet photoemission studies.
离子对液态水的几何结构有深远影响,并且已知水相环境会改变离子的电子结构。在此,我们将来自液体微射流的光电子能谱测量与分子动力学和量子化学计算相结合,以解决相反的问题,即离子在多大程度上影响液态水的电子结构?我们研究了碘化钠(NaI)在很宽浓度范围内的水溶液,从几乎纯水到8 M溶液,记录了5至60 eV结合能范围内的光谱,以涵盖所有水的价态以及溶质Na的2p、I的4d和I的5p轨道电离峰。我们观察到,溶质离子的电子结合能仅随电解质浓度有轻微变化,在约8 M的范围内变化小于150±60 meV。此外,当我们将样品从稀盐水溶液转变为粘性的、类似晶体的相时,液态水的光电子能谱出人意料地受到轻微影响。最显著的光谱变化是水的1b电离跃迁的负结合能位移(高达 -370±60 meV)以及平顶形状的水的3a电离特征变窄(高达450±90 meV)。引入了一种新颖的计算效率高的技术,使用嵌入介电连续介质中的分子动力学(MD)模拟的小团簇来计算液态光发射光谱。这种理论处理捕捉到了水相光发射峰的特征位置和结构,重现了实验观察到的水的3a特征变窄以及水结合能对电解质浓度的弱敏感性。这些计算使我们能够将小的结合能位移归因于离子引起的分子间电子相互作用的破坏。此外,它们证明了考虑浓度依赖的屏蔽长度对于正确描述溶剂化体系电子结构的重要性。考虑到电子屏蔽,计算结果突出了电解质浓度对1b结合能参考的最小影响,这与实验结果一致。这使我们得出一个关键发现,即液态水孤立的、结合能最低的1b光发射特征是水相液体微射流光发射研究中一个稳健的能量参考。