Wesley Thejas S, Hülsey Max J, Westendorff Karl S, Lewis Noah B, Crumlin Ethan J, Román-Leshkov Yuriy, Surendranath Yogesh
Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
Department of Chemistry, Massachusetts Institute of Technology Cambridge MA 02139 USA.
Chem Sci. 2023 May 25;14(26):7154-7160. doi: 10.1039/d3sc00884c. eCollection 2023 Jul 5.
Electrochemical polarization, which often plays a critical role in driving chemical reactions at solid-liquid interfaces, can arise spontaneously through the exchange of ions and/or electrons across the interface. However, the extent to which such spontaneous polarization prevails at nonconductive interfaces remains unclear because such materials preclude measuring and controlling the degree of interfacial polarization standard (, wired) potentiometric methods. Herein, we circumvent the limitations of wired potentiometry by applying infrared and ambient pressure X-ray photoelectron spectroscopies (AP-XPS) to probe the electrochemical potential of nonconductive interfaces as a function of solution composition. As a model class of macroscopically nonconductive interfaces, we specifically probe the degree of spontaneous polarization of ZrO-supported Pt and Au nanoparticles immersed in aqueous solutions of varying pH. Shifts in the Pt-adsorbed CO vibrational band position evince electrochemical polarization of the Pt/ZrO-water interface with changing pH, and AP-XPS reveals quasi-Nernstian shifts of the electrochemical potential of Pt and Au with pH in the presence of H. These results indicate that spontaneous proton transfer equilibrated H/H interconversion spontaneously polarizes metal nanoparticles even when supported on a nonconductive host. Consequently, these findings indicate that solution composition (, pH) can be an effective handle for tuning interfacial electrical polarization and potential at nonconductive interfaces.
电化学极化在驱动固液界面化学反应中常常起着关键作用,它可通过界面处离子和/或电子的交换自发产生。然而,这种自发极化在非导电界面上占主导的程度仍不明确,因为此类材料无法用标准(有线)电位测量方法来测量和控制界面极化程度。在此,我们通过应用红外和常压X射线光电子能谱(AP-XPS)来探测非导电界面的电化学势随溶液组成的变化,从而规避了有线电位测定法的局限性。作为宏观非导电界面的一类模型,我们专门研究了浸入不同pH值水溶液中的ZrO负载的Pt和Au纳米颗粒的自发极化程度。Pt吸附的CO振动带位置的变化表明Pt/ZrO-水界面随pH值变化的电化学极化,并且AP-XPS揭示了在有H存在时Pt和Au的电化学势随pH值的准能斯特位移。这些结果表明,即使负载在非导电主体上,自发质子转移(平衡的H/H相互转化)也会使金属纳米颗粒自发极化。因此,这些发现表明溶液组成(如pH值)可以成为调节非导电界面处界面电极化和电位的有效手段。