Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY, 14214, USA.
J Physiol. 2021 Nov;599(21):4831-4844. doi: 10.1113/JP282073. Epub 2021 Oct 3.
Pain and thermosensation rely on temperature-sensitive ion channels at peripheral nerve endings for transducing thermal cues into electrical signals. Members of the transient receptor potential (TRP) family are prominent candidates for temperature transducers in mammals. These thermal TRP channels possess an unprecedentedly steep temperature dependence, allowing them to discriminate small temperature variations. Thermodynamically, it is understood that the strong temperature sensitivity of the channel arises because opening of the channel undergoes reactions involving large enthalpy and entropy changes. However, the underlying molecular mechanisms have remained elusive. Here we investigated the molecular basis for heat activation of TRPV2, a thermal TRP channel in the vanilloid subfamily with the strongest temperature dependence among TRP channels. We unravel a minimum molecular region in the proximal N-terminus which dictates the slope temperature sensitivity of the channel. Structurally, the region comprises a helix-turn-helix motif and is positioned among the TRP helix from the C-terminus, the S2-S3 linker from the transmembrane domain and the ankyrin repeats from the distal N-terminus. Chimeric exchanges of the subregion alone sufficed to diminish the high temperature dependence in the wild-type TRPV2. Our results support a pivotal role for the structural assembly around the TRP domain in the gating of thermal TRP channels by temperature. The findings also shed insight into how the proximal N-terminal domain plays its role in the heat activation of vanilloid receptors. KEY POINTS: The vanilloid receptor subtype 2 (TRPV2) is a heat-sensitive transient receptor potential (TRP) channel with the strongest temperature dependence among thermal TRP channels. The channel also has a high temperature activation threshold above 50°C which has rendered it difficult to study by conventional patch-clamp methods. Here we utilize fast laser temperature jumps to address the challenges of technical accessibility and explore the molecular basis underlying the high temperature dependence of the channel. We unravel a short helix-turn-helix motif in the proximal N-terminus, which controls the heat activation profile of the channel. Chimeric exchanges of the subregion alone sufficed to diminish the high temperature dependence in the wild-type TRPV2. Our results provide insights on how the proximal N-terminal domain plays its role in the heat activation of vanilloid receptors.
疼痛和温度感觉依赖于外周神经末梢的温度敏感离子通道将热信号转换为电信号。瞬时受体电位(TRP)家族成员是哺乳动物中温度传感器的主要候选者。这些热 TRP 通道具有前所未有的陡峭温度依赖性,使它们能够区分小的温度变化。热力学上,人们理解到通道的强温度敏感性是由于通道的打开涉及大焓和熵变化的反应。然而,潜在的分子机制仍然难以捉摸。在这里,我们研究了热激活香草素受体亚型 2(TRPV2)的分子基础,TRPV2 是热 TRP 通道中温度依赖性最强的通道。我们揭示了近端 N 端的最小分子区域,该区域决定了通道的斜率温度敏感性。结构上,该区域包含一个螺旋-转角-螺旋基序,位于 C 端的 TRP 螺旋、跨膜域的 S2-S3 连接子和远端 N 端的锚蛋白重复之间。单独交换亚区足以减少野生型 TRPV2 中的高温度依赖性。我们的结果支持结构组装在温度对热 TRP 通道门控中的关键作用。研究结果还揭示了近端 N 端结构域在香草素受体热激活中的作用机制。关键点:香草素受体亚型 2(TRPV2)是一种热敏感的瞬时受体电位(TRP)通道,在热 TRP 通道中具有最强的温度依赖性。该通道的温度激活阈值也高于 50°C,这使得传统的膜片钳方法难以研究。在这里,我们利用快速激光温度跃变来解决技术可及性的挑战,并探索通道高温度依赖性的分子基础。我们揭示了近端 N 端的一个短螺旋-转角-螺旋基序,它控制着通道的热激活特性。单独交换亚区足以减少野生型 TRPV2 中的高温度依赖性。我们的结果提供了关于近端 N 端结构域如何在香草素受体的热激活中发挥作用的见解。