Department of Chemistry, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave. Urbana, Illinois 61801, United States.
Inorg Chem. 2021 Oct 18;60(20):15599-15609. doi: 10.1021/acs.inorgchem.1c02210. Epub 2021 Oct 4.
Active site hydrogen-bond (H-bond) networks represent a key component by which metalloenzymes control the formation and deployment of high-valent transition metal-oxo intermediates. We report a series of dinuclear cobalt complexes that serve as structural models for the nonheme diiron enzyme family and feature a Co(μ-OH) diamond core stabilized by intramolecular H-bond interactions. We define the conditions required for the kinetically controlled synthesis of these complexes: [Co(μ-OH)(μ-OAc)(κ-OAc)(py)][PF] (), where OAc = acetate and py = pyridine with -substituent R, and we describe a homologous series of in which the -R substituent on pyridine is modulated. The solid state X-ray diffraction (XRD) structures of are similar across the series, but in solution, their H NMR spectra reveal a linear free energy relationship (LFER) where, as R becomes increasingly electron-withdrawing, the intramolecular H-bond interaction between bridging μ-OH and κ-acetate ligands results in increasingly "oxo-like" μ-OH bridges. Deprotonation of the bridging μ-OH results in the quantitative conversion to corresponding cubane complexes: [Co(μ-O)(μ-OAc)(py)] (), which represent the thermodynamic sink of self-assembly. These reactions are unusually slow for rate-limiting deprotonation events, but rapid-mixing experiments reveal a 6000-fold rate acceleration on going from R = OMe to R = CN. These results suggest that we can tune reactivity by modulating the μ-OH p in the presence of intramolecular H-bond interactions to maintain stability as the octahedral centers become increasingly acidic. Nature may similarly employ dynamic carboxylate-mediated H-bond interactions to control the reactivity of acidic transition metal-oxo intermediates.
活性位点氢键 (H-bond) 网络是金属酶控制高价过渡金属-氧中间体形成和部署的关键组成部分。我们报告了一系列双核钴配合物,它们作为非血红素二铁酶家族的结构模型,具有由分子内 H-bond 相互作用稳定的 Co(μ-OH) 金刚石核。我们定义了动力学控制合成这些配合物所需的条件:[Co(μ-OH)(μ-OAc)(κ-OAc)(py)][PF] (),其中 OAc = 醋酸盐,py = 吡啶,带有 -取代基 R,我们描述了一个同系物系列,其中吡啶上的 -R 取代基被调制。在整个系列中,的固态 X 射线衍射 (XRD) 结构相似,但在溶液中,它们的 H NMR 光谱揭示了一条线性自由能关系 (LFER),其中随着 R 变得越来越吸电子,桥接 μ-OH 和 κ-醋酸盐配体之间的分子内 H-bond 相互作用导致 μ-OH 桥变得越来越“类氧”。桥接 μ-OH 的去质子化导致定量转化为相应的立方烷配合物:[Co(μ-O)(μ-OAc)(py)] (),它们代表自组装的热力学汇。对于限速去质子化事件,这些反应的速度异常缓慢,但快速混合实验表明,从 R = OMe 到 R = CN,反应速度会加速 6000 倍。这些结果表明,我们可以通过在存在分子内 H-bond 相互作用的情况下调节 μ-OH p 来调节反应性,以在八面体 中心变得越来越酸性时保持稳定性。自然界可能同样利用动态羧酸盐介导的 H-bond 相互作用来控制酸性过渡金属-氧中间体的反应性。