Suppr超能文献

分子内氢键相互作用调节仿生物双(μ-羟)二钴配合物的反应性。

Intramolecular Hydrogen-Bond Interactions Tune Reactivity in Biomimetic Bis(μ-hydroxo)dicobalt Complexes.

机构信息

Department of Chemistry, University of Illinois, Urbana-Champaign, 600 S. Mathews Ave. Urbana, Illinois 61801, United States.

出版信息

Inorg Chem. 2021 Oct 18;60(20):15599-15609. doi: 10.1021/acs.inorgchem.1c02210. Epub 2021 Oct 4.

Abstract

Active site hydrogen-bond (H-bond) networks represent a key component by which metalloenzymes control the formation and deployment of high-valent transition metal-oxo intermediates. We report a series of dinuclear cobalt complexes that serve as structural models for the nonheme diiron enzyme family and feature a Co(μ-OH) diamond core stabilized by intramolecular H-bond interactions. We define the conditions required for the kinetically controlled synthesis of these complexes: [Co(μ-OH)(μ-OAc)(κ-OAc)(py)][PF] (), where OAc = acetate and py = pyridine with -substituent R, and we describe a homologous series of in which the -R substituent on pyridine is modulated. The solid state X-ray diffraction (XRD) structures of are similar across the series, but in solution, their H NMR spectra reveal a linear free energy relationship (LFER) where, as R becomes increasingly electron-withdrawing, the intramolecular H-bond interaction between bridging μ-OH and κ-acetate ligands results in increasingly "oxo-like" μ-OH bridges. Deprotonation of the bridging μ-OH results in the quantitative conversion to corresponding cubane complexes: [Co(μ-O)(μ-OAc)(py)] (), which represent the thermodynamic sink of self-assembly. These reactions are unusually slow for rate-limiting deprotonation events, but rapid-mixing experiments reveal a 6000-fold rate acceleration on going from R = OMe to R = CN. These results suggest that we can tune reactivity by modulating the μ-OH p in the presence of intramolecular H-bond interactions to maintain stability as the octahedral centers become increasingly acidic. Nature may similarly employ dynamic carboxylate-mediated H-bond interactions to control the reactivity of acidic transition metal-oxo intermediates.

摘要

活性位点氢键 (H-bond) 网络是金属酶控制高价过渡金属-氧中间体形成和部署的关键组成部分。我们报告了一系列双核钴配合物,它们作为非血红素二铁酶家族的结构模型,具有由分子内 H-bond 相互作用稳定的 Co(μ-OH) 金刚石核。我们定义了动力学控制合成这些配合物所需的条件:[Co(μ-OH)(μ-OAc)(κ-OAc)(py)][PF] (),其中 OAc = 醋酸盐,py = 吡啶,带有 -取代基 R,我们描述了一个同系物系列,其中吡啶上的 -R 取代基被调制。在整个系列中,的固态 X 射线衍射 (XRD) 结构相似,但在溶液中,它们的 H NMR 光谱揭示了一条线性自由能关系 (LFER),其中随着 R 变得越来越吸电子,桥接 μ-OH 和 κ-醋酸盐配体之间的分子内 H-bond 相互作用导致 μ-OH 桥变得越来越“类氧”。桥接 μ-OH 的去质子化导致定量转化为相应的立方烷配合物:[Co(μ-O)(μ-OAc)(py)] (),它们代表自组装的热力学汇。对于限速去质子化事件,这些反应的速度异常缓慢,但快速混合实验表明,从 R = OMe 到 R = CN,反应速度会加速 6000 倍。这些结果表明,我们可以通过在存在分子内 H-bond 相互作用的情况下调节 μ-OH p 来调节反应性,以在八面体 中心变得越来越酸性时保持稳定性。自然界可能同样利用动态羧酸盐介导的 H-bond 相互作用来控制酸性过渡金属-氧中间体的反应性。

相似文献

1
Intramolecular Hydrogen-Bond Interactions Tune Reactivity in Biomimetic Bis(μ-hydroxo)dicobalt Complexes.
Inorg Chem. 2021 Oct 18;60(20):15599-15609. doi: 10.1021/acs.inorgchem.1c02210. Epub 2021 Oct 4.
2
Carboxylate Shift Dynamics in Biomimetic Co(μ-OH) Complexes.
Inorg Chem. 2024 Jan 15;63(2):1109-1118. doi: 10.1021/acs.inorgchem.3c03470. Epub 2024 Jan 3.
8
Metal-Metal Redox Exchange to Produce Heterometallic Manganese-Cobalt Oxo Cubanes via a "Dangler" Intermediate.
J Am Chem Soc. 2024 Jul 24;146(29):20279-20290. doi: 10.1021/jacs.4c05367. Epub 2024 Jul 8.

引用本文的文献

1
Isolation and Crystallographic Characterization of an Octavalent CoO Diamond Core.
J Am Chem Soc. 2024 Aug 28;146(34):23998-24008. doi: 10.1021/jacs.4c07335. Epub 2024 Aug 15.
2
Metal-Metal Redox Exchange to Produce Heterometallic Manganese-Cobalt Oxo Cubanes via a "Dangler" Intermediate.
J Am Chem Soc. 2024 Jul 24;146(29):20279-20290. doi: 10.1021/jacs.4c05367. Epub 2024 Jul 8.
3
10-fold faster C-H bond hydroxylation by a Co(µ-O) complex [via a Co(µ-O)(µ-OH) intermediate] versus its FeFe analog.
Proc Natl Acad Sci U S A. 2023 Dec 19;120(51):e2307950120. doi: 10.1073/pnas.2307950120. Epub 2023 Dec 12.

本文引用的文献

1
OctaDist: a tool for calculating distortion parameters in spin crossover and coordination complexes.
Dalton Trans. 2021 Jan 21;50(3):1086-1096. doi: 10.1039/d0dt03988h. Epub 2020 Dec 24.
2
Highly Reactive Co(μ-O) Diamond Core Complex That Cleaves C-H Bonds.
J Am Chem Soc. 2019 Dec 26;141(51):20127-20136. doi: 10.1021/jacs.9b09531. Epub 2019 Dec 16.
3
Isolation and Study of Ruthenium-Cobalt Oxo Cubanes Bearing a High-Valent, Terminal Ru-Oxo with Significant Oxyl Radical Character.
J Am Chem Soc. 2019 Dec 18;141(50):19859-19869. doi: 10.1021/jacs.9b10320. Epub 2019 Dec 5.
4
Regulating the Basicity of Metal-Oxido Complexes with a Single Hydrogen Bond and Its Effect on C-H Bond Cleavage.
J Am Chem Soc. 2019 Jul 17;141(28):11142-11150. doi: 10.1021/jacs.9b03688. Epub 2019 Jul 5.
5
M-O Bonding Beyond the Oxo Wall: Spectroscopy and Reactivity of Cobalt(III)-Oxyl and Cobalt(III)-Oxo Complexes.
Angew Chem Int Ed Engl. 2019 Jul 8;58(28):9619-9624. doi: 10.1002/anie.201904546. Epub 2019 Jun 11.
6
Experimental Evidence for p K-Driven Asynchronicity in C-H Activation by a Terminal Co(III)-Oxo Complex.
J Am Chem Soc. 2019 Mar 6;141(9):4051-4062. doi: 10.1021/jacs.8b13490. Epub 2019 Feb 21.
7
Living with Oxygen.
Acc Chem Res. 2018 Aug 21;51(8):1850-1857. doi: 10.1021/acs.accounts.8b00245. Epub 2018 Jul 17.
8
Oxygen activation at a dicobalt centre of a dipyridylethane naphthyridine complex.
Dalton Trans. 2018 Aug 29;47(34):11903-11908. doi: 10.1039/c8dt01598h.
9
Artificial Metalloproteins Containing CoO Cubane Active Sites.
J Am Chem Soc. 2018 Feb 28;140(8):2739-2742. doi: 10.1021/jacs.7b13052. Epub 2018 Feb 13.
10
Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes.
Chem Rev. 2018 Mar 14;118(5):2554-2592. doi: 10.1021/acs.chemrev.7b00457. Epub 2018 Feb 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验